1
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
2
|
Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, Zhou X, Yang B, Chen Z. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 2024; 12:1425-1448. [PMID: 38374788 DOI: 10.1039/d3bm01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To date, organ transplantation remains an effective method for treating end-stage diseases of various organs. In recent years, despite the continuous development of organ transplantation technology, a variety of problems restricting its progress have emerged one after another, and the shortage of donors is at the top of the list. Bioprinting is a very useful tool that has huge application potential in many fields of life science and biotechnology, among which its use in medicine occupies a large area. With the development of bioprinting, advances in medicine have focused on printing cells and tissues for tissue regeneration and reconstruction of viable human organs, such as the heart, kidneys, and bones. In recent years, with the development of organ transplantation, three-dimensional (3D) bioprinting has played an increasingly important role in this field, giving rise to many unsolved problems, including a shortage of organ donors. This review respectively introduces the development of 3D bioprinting as well as its working principles and main applications in the medical field, especially in the applications, and advancements and challenges of 3D bioprinting in organ transplantation. With the continuous update and progress of printing technology and its deeper integration with the medical field, many obstacles will have new solutions, including tissue repair and regeneration, organ reconstruction, etc., especially in the field of organ transplantation. 3D printing technology will provide a better solution to the problem of donor shortage.
Collapse
Affiliation(s)
- Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhiping Hu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
3
|
Rojek KO, Wrzos A, Żukowski S, Bogdan M, Lisicki M, Szymczak P, Guzowski J. Long-term day-by-day tracking of microvascular networks sprouting in fibrin gels: From detailed morphological analyses to general growth rules. APL Bioeng 2024; 8:016106. [PMID: 38327714 PMCID: PMC10849774 DOI: 10.1063/5.0180703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Understanding and controlling of the evolution of sprouting vascular networks remains one of the basic challenges in tissue engineering. Previous studies on the vascularization dynamics have typically focused only on the phase of intense growth and often lacked spatial control over the initial cell arrangement. Here, we perform long-term day-by-day analysis of tens of isolated microvasculatures sprouting from endothelial cell-coated spherical beads embedded in an external fibrin gel. We systematically study the topological evolution of the sprouting networks over their whole lifespan, i.e., for at least 14 days. We develop a custom image analysis toolkit and quantify (i) the overall length and area of the sprouts, (ii) the distributions of segment lengths and branching angles, and (iii) the average number of branch generations-a measure of network complexity. We show that higher concentrations of vascular endothelial growth factor (VEGF) lead to earlier sprouting and more branched networks, yet without significantly affecting the speed of growth of individual sprouts. We find that the mean branching angle is weakly dependent on VEGF and typically in the range of 60°-75°, suggesting that, by comparison with the available diffusion-limited growth models, the bifurcating tips tend to follow local VEGF gradients. At high VEGF concentrations, we observe exponential distributions of segment lengths, which signify purely stochastic branching. Our results-due to their high statistical relevance-may serve as a benchmark for predictive models, while our new image analysis toolkit, offering unique features and high speed of operation, could be exploited in future angiogenic drug tests.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Antoni Wrzos
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | - Michał Bogdan
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Gerardo‐Nava JL, Jansen J, Günther D, Klasen L, Thiebes AL, Niessing B, Bergerbit C, Meyer AA, Linkhorst J, Barth M, Akhyari P, Stingl J, Nagel S, Stiehl T, Lampert A, Leube R, Wessling M, Santoro F, Ingebrandt S, Jockenhoevel S, Herrmann A, Fischer H, Wagner W, Schmitt RH, Kiessling F, Kramann R, De Laporte L. Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner. Adv Healthc Mater 2023; 12:e2301030. [PMID: 37311209 PMCID: PMC11468549 DOI: 10.1002/adhm.202301030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/21/2023] [Indexed: 06/15/2023]
Abstract
Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.
Collapse
|
5
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
6
|
Costa BL, Adão RMR, Maibohm C, Accardo A, Cardoso VF, Nieder JB. Cellular Interaction of Bone Marrow Mesenchymal Stem Cells with Polymer and Hydrogel 3D Microscaffold Templates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13013-13024. [PMID: 35282678 PMCID: PMC8949723 DOI: 10.1021/acsami.1c23442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/03/2022] [Indexed: 05/05/2023]
Abstract
Biomimicking biological niches of healthy tissues or tumors can be achieved by means of artificial microenvironments, where structural and mechanical properties are crucial parameters to promote tissue formation and recreate natural conditions. In this work, three-dimensional (3D) scaffolds based on woodpile structures were fabricated by two-photon polymerization (2PP) of different photosensitive polymers (IP-S and SZ2080) and hydrogels (PEGDA 700) using two different 2PP setups, a commercial one and a customized one. The structures' properties were tuned to study the effect of scaffold dimensions (gap size) and their mechanical properties on the adhesion and proliferation of bone marrow mesenchymal stem cells (BM-MSCs), which can serve as a model for leukemic diseases, among other hematological applications. The woodpile structures feature gap sizes of 25, 50, and 100 μm and a fixed beam diameter of 25 μm, to systematically study the optimal cell colonization that promotes healthy cell growth and potential tissue formation. The characterization of the scaffolds involved scanning electron microscopy and mechanical nanoindenting, while their suitability for supporting cell growth was evaluated with live/dead cell assays and multistaining 3D confocal imaging. In the mechanical assays of the hydrogel material, we observed two different stiffness ranges depending on the indentation depth. Larger gap woodpile structures coated with fibronectin were identified as the most promising scaffolds for 3D BM-MSC cellular models, showing higher proliferation rates. The results indicate that both the design and the employed materials are suitable for further assays, where retaining the BM-MSC stemness and original features is crucial, including studies focused on BM disorders such as leukemia and others. Moreover, the combination of 3D scaffold geometry and materials holds great potential for the investigation of cellular behaviors in a co-culture setting, for example, mesenchymal and hematopoietic stem cells, to be further applied in medical research and pharmacological studies.
Collapse
Affiliation(s)
- Beatriz
N. L. Costa
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
- CMEMS-UMinho,
University of Minho, DEI, Campus de Azurém, Guimarães 4800-058, Portugal
- Faculty
of Mechanical, Maritime, and Materials Engineering (3mE), Department
of Precision and Microsystems Engineering (PME), Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Ricardo M. R. Adão
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| | - Christian Maibohm
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| | - Angelo Accardo
- Faculty
of Mechanical, Maritime, and Materials Engineering (3mE), Department
of Precision and Microsystems Engineering (PME), Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Vanessa F. Cardoso
- CMEMS-UMinho,
University of Minho, DEI, Campus de Azurém, Guimarães 4800-058, Portugal
- CF-UM-UP,
Centro de Física das Universidades do Minho e Porto, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jana B. Nieder
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| |
Collapse
|
7
|
Canadas RF, Liu Z, Gasperini L, Fernandes DC, Maia FR, Reis RL, Marques AP, Liu C, Oliveira JM. Numerical and experimental simulation of a dynamic-rotational 3D cell culture for stratified living tissue models. Biofabrication 2022; 14. [PMID: 35172294 DOI: 10.1088/1758-5090/ac55a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022]
Abstract
Human tissues and organs are inherently heterogeneous, and their functionality is determined by the interplay between cell types, their secondary architecture, and gradients of signalling molecules and metabolites. To mimic the dynamics of native tissues, perfusion bioreactors and microfluidic devices are widely used, enhancing cell culture viability in the core of 3D constructs. Still, most in vitro methods for drug screening include cell or tissue exposure to constant and homogeneous compound concentrations over the testing period. Moreover, a prevalent issue inhibiting the large-scale adoption of microfluidics and bioreactors is the tubing dependence to induce a perfusion regime. Here, we propose a compartmentalized rotational (CR) bioreactor for stable control over gradient tissue culture conditions. Using the CR bioreactor, adjacent culture lanes are patterned by controlled flow dynamics to enable tissue stratification. Numerical and experimental models demonstrate cell seeding dynamics, as well as culture media rotational perfusion and gradient formations. Additionally, the developed system induces vertical and horizontal rotations, which increase medium exchange and homogeneous construct maturation, allowing both perfused tubing-based and tubing-free approaches. As a proof-of-concept, experiments are accompanied by a numerical model able to simulate the cellular inoculation, growth, and dynamic cell culture in 3D scaffolds and hydrogel. The examination of a blood-brain-barrier (BBB) model demonstrates the impact of a heterotypic culture on molecular permeability under mimetic dynamic conditions. Briefly, the present work discloses the simulation of 3D dynamic cultures, and a semi-automated platform for heterotypic tissues in vitro modelling, for broad tissue engineering and drug discovery/screening applications.
Collapse
Affiliation(s)
- Raphael F Canadas
- University of Minho, 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandr, Braga, 4704-553, PORTUGAL
| | - Ziyu Liu
- University College London, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Luca Gasperini
- University of Minho, 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandr, Guimaraes, 4805-017, PORTUGAL
| | - Diogo C Fernandes
- University of Minho, 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandr, Guimaraes, 4805-017, PORTUGAL
| | - Fátima Raquel Maia
- , University of Minho, 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandr, Guimaraes, 4805-017, PORTUGAL
| | - Rui L Reis
- University of Minho, 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandr, Guimaraes, 4805-017, PORTUGAL
| | - Alexandra P Marques
- University of Minho, 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandr, Guimaraes, 4805-017, PORTUGAL
| | - Chaozong Liu
- University College London, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London, London, HA7 4LP, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Joaquim Miguel Oliveira
- University of Minho, 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandr, Guimaraes, 4805-017, PORTUGAL
| |
Collapse
|
8
|
Choi J, Mathew S, Oerter S, Appelt-Menzel A, Hansmann J, Schmitz T. Online Measurement System for Dynamic Flow Bioreactors to Study Barrier Integrity of hiPSC-Based Blood-Brain Barrier In Vitro Models. Bioengineering (Basel) 2022; 9:bioengineering9010039. [PMID: 35049748 PMCID: PMC8773345 DOI: 10.3390/bioengineering9010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is a noninvasive, reliable, and efficient method to analyze the barrier integrity of in vitro tissue models. This well-established tool is used most widely to quantify the transendothelial/epithelial resistance (TEER) of Transwell-based models cultured under static conditions. However, dynamic culture in bioreactors can achieve advanced cell culture conditions that mimic a more tissue-specific environment and stimulation. This requires the development of culture systems that also allow for the assessment of barrier integrity under dynamic conditions. Here, we present a bioreactor system that is capable of the automated, continuous, and non-invasive online monitoring of cellular barrier integrity during dynamic culture. Polydimethylsiloxane (PDMS) casting and 3D printing were used for the fabrication of the bioreactors. Additionally, attachable electrodes based on titanium nitride (TiN)-coated steel tubes were developed to perform EIS measurements. In order to test the monitored bioreactor system, blood–brain barrier (BBB) in vitro models derived from human-induced pluripotent stem cells (hiPSC) were cultured for up to 7 days. We applied equivalent electrical circuit fitting to quantify the electrical parameters of the cell layer and observed that TEER gradually decreased over time from 2513 Ω·cm2 to 285 Ω·cm2, as also specified in the static control culture. Our versatile system offers the possibility to be used for various dynamic tissue cultures that require a non-invasive monitoring system for barrier integrity.
Collapse
Affiliation(s)
- Jihyoung Choi
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
- Correspondence: (J.C.); (A.A.-M.)
| | - Sanjana Mathew
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
| | - Sabrina Oerter
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Röntgenring 11, 97070 Würzburg, Germany;
| | - Antje Appelt-Menzel
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Röntgenring 11, 97070 Würzburg, Germany;
- Correspondence: (J.C.); (A.A.-M.)
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
- Faculty of Electronics, University of Applied Science Würzburg-Schweinfurt, Ignaz-Schön-Straße 11, 97421 Schweinfurt, Germany
| | - Tobias Schmitz
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
| |
Collapse
|
9
|
Gärtler M, Khaydarov V, Klöpper B, Urbas L. The Machine Learning Life Cycle in Chemical Operations – Status and Open Challenges. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marco Gärtler
- ABB Corporate Research Center Wallstadter Straße 59 68526 Ladenburg Germany
| | - Valentin Khaydarov
- Technische Universität Dresden Professur für Prozessleittechnik 01062 Dresden Germany
| | - Benjamin Klöpper
- ABB Corporate Research Center Wallstadter Straße 59 68526 Ladenburg Germany
| | - Leon Urbas
- Technische Universität Dresden Professur für Prozessleittechnik 01062 Dresden Germany
| |
Collapse
|
10
|
Arambula‐Maldonado R, Geraili A, Xing M, Mequanint K. Tissue engineering and regenerative therapeutics: The nexus of chemical engineering and translational medicine. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Armin Geraili
- Department of Chemical and Biochemical Engineering University of Western Ontario London Ontario Canada
| | - Malcolm Xing
- Department of Mechanical Engineering University of Manitoba Winnipeg Manitoba Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, University of Western Ontario London Ontario Canada
- Department of Chemical and Biochemical Engineering University of Western Ontario London Ontario Canada
| |
Collapse
|
11
|
Khodadadei F, Liu AP, Harris CA. A high-resolution real-time quantification of astrocyte cytokine secretion under shear stress for investigating hydrocephalus shunt failure. Commun Biol 2021; 4:387. [PMID: 33758339 PMCID: PMC7988003 DOI: 10.1038/s42003-021-01888-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
It has been hypothesized that physiological shear forces acting on medical devices implanted in the brain significantly accelerate the rate to device failure in patients with chronically indwelling neuroprosthetics. In hydrocephalus shunt devices, shear forces arise from cerebrospinal fluid flow. The shunt's unacceptably high failure rate is mostly due to obstruction with adherent inflammatory cells. Astrocytes are the dominant cell type bound directly to obstructing shunts, rapidly manipulating their activation via shear stress-dependent cytokine secretion. Here we developed a total internal reflection fluorescence microscopy combined with a microfluidic shear device chip (MSDC) for quantitative analysis and direct spatial-temporal mapping of secreted cytokines at the single-cell level under physiological shear stress to identify the root cause for shunt failure. Real-time secretion imaging at 1-min time intervals enabled successful detection of a significant increase of astrocyte IL-6 cytokine secretion under shear stress greater than 0.5 dyne/cm2, validating our hypothesis and highlighting the importance of reducing shear stress activation of cells.
Collapse
Affiliation(s)
- Fatemeh Khodadadei
- Dept. of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Allen P Liu
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Dept. of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Dept. of Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Carolyn A Harris
- Dept. of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA.
- Dept. of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
- Dept. of Neurosurgery, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Mendonça da Silva J, Erro E, Awan M, Chalmers SA, Fuller B, Selden C. Small-Scale Fluidized Bed Bioreactor for Long-Term Dynamic Culture of 3D Cell Constructs and in vitro Testing. Front Bioeng Biotechnol 2020; 8:895. [PMID: 32974291 PMCID: PMC7468403 DOI: 10.3389/fbioe.2020.00895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
With the increasing interest in three-dimensional (3D) cell constructs that better represent native tissues, comes the need to also invest in devices, i.e., bioreactors, that provide a controlled dynamic environment similar to the perfusion mechanism observed in vivo. Here a laboratory-scale fluidized bed bioreactor (sFBB) was designed for hydrogel (i.e., alginate) encapsulated cells to generate a dynamic culture system that produced a homogenous milieu and host substantial biomass for long-term evolution of tissue-like structures and “per cell” performance analysis. The bioreactor design, conceptualized through scale-down empirical similarity rules, was initially validated through computational fluid dynamics analysis for the distributor capacity of homogenously dispersing the flow with an average fluid velocity of 4.596 × 10–4 m/s. Experimental tests then demonstrated a consistent fluidization of hydrogel spheres, while maintaining shape and integrity (606.9 ± 99.3 μm diameter and 0.96 shape factor). It also induced mass transfer in and out of the hydrogel at a faster rate than static conditions. Finally, the sFBB sustained culture of alginate encapsulated hepatoblastoma cells for 12 days promoting proliferation into highly viable (>97%) cell spheroids at a high final density of 27.3 ± 0.78 million cells/mL beads. This was reproducible across multiple units set up in parallel and operating simultaneously. The sFBB prototype constitutes a simple and robust tool to generate 3D cell constructs, expandable into a multi-unit setup for simultaneous observations and for future development and biological evaluation of in vitro tissue models and their responses to different agents, increasing the complexity and speed of R&D processes.
Collapse
Affiliation(s)
- Joana Mendonça da Silva
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Eloy Erro
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Maooz Awan
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Sherri-Ann Chalmers
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Barry Fuller
- UCL Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Clare Selden
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|