1
|
Mateos DM, Bhatnagar JM. Restoring ecological complexity in a changing environment. Curr Biol 2024; 34:R365-R371. [PMID: 38714167 DOI: 10.1016/j.cub.2024.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
As land use leaves massive tracts of land vacant for recovery, restoration must undergo a substantial shift to incorporate a complexity perspective beyond the traditional community, biodiversity or functional views. With an interaction-function perspective, we may be able to achieve ecosystems with better chances to adapt to current environmental changes and, especially, to climate change. We explore combined approaches that include still unused and underexplored techniques that will soon go mainstream and produce massive amounts of information to address the complexity gap. As we understand how complexity reassembles after the end of agriculture, we will be able to design actions to restore or enhance it at unprecedented spatial scales while increasing its adaptability to environmental changes.
Collapse
Affiliation(s)
- David Moreno Mateos
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK; Basque Centre for Climate Change (BC3), Leioa 48940, Spain; Ikerbasque Foundation, Bilbao 48009, Spain.
| | | |
Collapse
|
2
|
Hu Y, Cai J, Gong Y, Liu C, Jiang X, Tang X, Shao K, Gao G. The collapse and re-establishment of stability regulate the gradual transition of bacterial communities from macrophytes- to phytoplankton-dominated types in a large eutrophic lake. FEMS Microbiol Ecol 2023; 99:fiad074. [PMID: 37656870 DOI: 10.1093/femsec/fiad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/03/2023] Open
Abstract
Eutrophic lakes often exhibit two alternative types: macrophytes-dominated (MD) and phytoplankton-dominated (PD). However, the nature of bacterial community types that whether the transition from the MD to the PD types occurs in a gradual or abrupt manner remains hotly debated. Further, the theoretical recognition that stability regulates the transition of bacterial community types remains qualitative. To address these issues, we divided the transition of bacterial communities along a trophic gradient into 12 successional stages, ranging from the MD to the PD types. Results showed that 12 states were clustered into three distinct regimes: MD type, intermediate transitional type and PD type. Bacterial communities were not different between consecutive stages, suggesting that the transition of alternative types occurs in a continuous gradient. At the same time, the stability of bacterial communities was significantly lower in the intermediate type than in the MD or PD types, highlighting that the collapse and re-establishment of community stability regulate the transition. Further, our results showed that the high complexity of taxon interactions and strong stochastic processes disrupt the stability. Ultimately, this study enables deeper insights into understanding the alternative types of microbial communities in the view of community stability.
Collapse
Affiliation(s)
- Yang Hu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jian Cai
- Xiangyang Polytechnic, Agriculture college, Hubei 441000, China
| | - Ying Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changqing Liu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingyu Jiang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
3
|
Sánchez‐Martín R, Verdú M, Montesinos‐Navarro A. Phylogenetic and functional constraints of plant facilitation rewiring. Ecology 2023; 104:e3961. [PMID: 36545892 PMCID: PMC10078402 DOI: 10.1002/ecy.3961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/30/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Facilitative interactions bind community species in intricate ecological networks, preserving species that would otherwise be lost. The traditional understanding of ecological networks as static components of biological communities overlooks the fact that species interactions in a network can fluctuate. Analyzing the patterns that cause those shifts can reveal the principles that govern the identity of pairwise interactions and whether they are predictable based on the traits of the interacting species and the local environmental contexts in which they occur. Here we explore how abiotic stress and phylogenetic and functional affinities constrain those shifts. Specifically, we hypothesize that rewiring the facilitative interactions is more limited in stressful than in mild environments. We present evidence of a distinct pattern in the rewiring of facilitation-driven communities at different stress levels. In highly stressful environments with a firm reliance on facilitation, rewiring is limited to growing beneath nurse species with traits to overcome harsh stressful conditions. However, when environments are milder, rewiring is more flexible, although it is still constrained to nurses that are close relatives. Understanding the ability of species to rewire their interactions is crucial for predicting how communities may respond to the unprecedented rate of perturbations on Earth.
Collapse
Affiliation(s)
| | - Miguel Verdú
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC‐UV‐GV)MoncadaSpain
| | | |
Collapse
|
4
|
Perea AJ, Wiegand T, Garrido JL, Rey PJ, Alcántara JM. Spatial phylogenetic and phenotypic patterns reveal ontogenetic shifts in ecological processes of plant community assembly. OIKOS 2022. [DOI: 10.1111/oik.09260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio J. Perea
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Depto Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ‐CSIC) Granada Spain
| | - Thorsten Wiegand
- Dept of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ) Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - José L. Garrido
- Depto Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ‐CSIC) Granada Spain
- Depto Ecología Evolutiva, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD‐CSIC) Sevilla Spain
| | - Pedro J. Rey
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra En Andalucía (IISTA) Granada Spain
| | - Julio M. Alcántara
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra En Andalucía (IISTA) Granada Spain
| |
Collapse
|