1
|
Rivera-Millot A, Harrison LB, Veyrier FJ. Copper management strategies in obligate bacterial symbionts: balancing cost and benefit. Emerg Top Life Sci 2024; 8:29-35. [PMID: 38095549 PMCID: PMC10903467 DOI: 10.1042/etls20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 02/23/2024]
Abstract
Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Luke B. Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
2
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Wang Y, Li D, Chitrakar B, Zhang X, Zhang N, Liu C, Li Y, Wang M, Tian H, Li C. Copper inhibits postacidification of yogurt and affects its flavor: A study based on the Cop operon. J Dairy Sci 2023; 106:897-911. [PMID: 36526462 DOI: 10.3168/jds.2022-22369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022]
Abstract
Yogurt and its related products are popular worldwide. During transportation and storage, Lactobacillus delbrueckii ssp. bulgaricus in yogurt continues to metabolize to form lactic acid, the postacidification phenomenon of yogurt. Postacidification of yogurt is a widespread phenomenon in the dairy industry. Many scholars have done research on controlling the postacidification process, but few report on the molecular mechanisms involved. In this study, we used a molecular-assisted approach to screen food additives that can inhibit postacidification and analyzed its effects on yogurt quality as well as its regulatory mechanism from multi-omics perspectives in combination. The copper ion was found to upregulate the expression of the LDB_RS05285 gene, and the copper transporter-related genes were regulated by copper. Based on the metabolic-level analysis, copper was found to promote lactose hydrolysis, accumulate a large amount of glucose and galactose, inhibit the conversion of glucose to lactic acid, and reduce the production of lactic acid. The significantly greater abundance of l-isoleucine and l-phenylalanine increased the abundance of 3-methylbutyraldehyde (∼1.2 times) and benzaldehyde (∼7.9 times) to different degrees, which contributed to the formation of the overall flavor of yogurt. Copper not only stabilizes the acidity of yogurt, but also it improves the flavor of yogurt. Through this established method involving quantitative and correlation analyses at the transcriptional and metabolic levels, this study provides guidance for the research and development of food additives that inhibit postacidification of yogurt and provide a reference for studying the changes of metabolites during storage of yogurt.
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xin Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China; School of Biochemical and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Chang Liu
- School of English and International Studies, Beijing Foreign Studies University, Beijing, 10089, China
| | - Yaxuan Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Miaoshu Wang
- Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China; New Hope Tensun (Hebei) Dairy Co. Ltd., Baoding, Hebei, 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei, 071000, China.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
4
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
5
|
Abstract
Copper is essential to most living beings but also highly toxic and as such is an important player at the host-pathogen interface. Bacteria have thus developed homeostatic mechanisms to tightly control its intracellular concentration. Known Cu export and import systems are under transcriptional control, whereas posttranscriptional regulatory mechanisms are yet to be characterized. We identified a three-gene operon, bp2923-bfrG-bp2921, downregulated by copper and notably encoding a TonB-dependent transporter in Bordetella pertussis. We show here that the protein encoded by the first gene, which is a member of the DUF2946 protein family, represents a new type of upstream Open Reading Frame (uORF) involved in posttranscriptional regulation of the downstream genes. In the absence of copper, the entire operon is transcribed and translated. Perception of copper by the nascent bp2923-coded protein via its conserved CXXC motif triggers Rho-dependent transcription termination between the first and second genes by relieving translation arrest on a conserved C-terminal RAPP motif. Homologs of bp2923 are widespread in bacterial genomes, where they head operons predicted to participate in copper homeostasis. This work has thus unveiled a new mode of genetic regulation by a transition metal and identified a regulatory function for a member of an uncharacterized family of bacterial proteins that we have named CruR, for copper-responsive upstream regulator.
Collapse
|
6
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|