1
|
Jorquera J, Morales L, Ng EYX, Noll D, Pertierra LR, Pliscoff P, Balza U, Boulinier T, Gamble A, Kasinsky T, McInnes JC, Marín JC, Olmastroni S, Pistorius P, Phillips RA, González-Solís J, Emmerson L, Poulin E, Bowie RCK, Burridge CP, Vianna JA. Genomic Introgression and Adaptation of Southern Seabird Species Facilitate Recent Polar Colonization. Mol Biol Evol 2025; 42:msaf053. [PMID: 40111469 PMCID: PMC11954569 DOI: 10.1093/molbev/msaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 03/22/2025] Open
Abstract
Genomic adaptation and introgression can occur during the speciation process, enabling species to diverge in their frequencies of adaptive alleles or acquire new alleles that may promote adaptation to environmental changes. There is limited information on introgression in organisms from extreme environments and their responses to climate change. To address these questions, we focused on the 3 southern skua species, selected for their widespread distribution across the Southern Hemisphere and their complex history of speciation and introgression events. Our genomic data reveal that these skuas underwent diversification around the Penultimate Glacial Period, followed by subsequent demographic expansion. We identified a geographic region of introgression among species that followed a directional pattern sourced from the Antarctic continent, South America, and east to west in subantarctic islands, all converging towards the Antarctic Peninsula. The 3 skua species and admixed individuals exhibited a unique pattern of putative genes under selection, allowing adaptation to extreme conditions. Individuals with a higher proportion of Brown Skua ancestry showed signs of selection on genes related to reproductive isolation, while admixed individuals with a higher proportion of South Polar Skua ancestry displayed patterns resembling those of the South Polar Skua. Introgression may be a key mechanism of adaptation for many species that may help buffer against the ongoing climate change.
Collapse
Affiliation(s)
- Josefina Jorquera
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
| | - Lucila Morales
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Elize Y X Ng
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Daly Noll
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Luis R Pertierra
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Biogeography and Global Change, Spanish Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Patricio Pliscoff
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Centro de Estudios Territoriales, Universidad de Los Andes, Santiago, Chile
| | - Ulises Balza
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
| | - Thierry Boulinier
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS, Université Montpellier, EPHE, IRD, Montpellier, France
| | - Amandine Gamble
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA
| | - Tatiana Kasinsky
- Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut, Argentina
| | - Julie C McInnes
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Science Branch, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Juan Carlos Marín
- Universidad del Bio-Bío, Departamento de Ciencias Básicas, Facultad de Ciencias, Laboratorio de Genómica y Biodiversidad, Chillán, Chile
| | - Silvia Olmastroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
- Museo Nazionale dell’Antartide “F. Ippolito,”, Siena, Italy
| | - Pierre Pistorius
- Marine Apex Predator Research Unit (MAPRU), Institute for Coastal and Marine Research and Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Dept. Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Louise Emmerson
- Science Branch, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Elie Poulin
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Laboratorio de Ecología Molecular (LEM), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology & Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
2
|
Melkikh AV. Progressive evolution of plants: A critical review. Biosystems 2025; 251:105444. [PMID: 40054834 DOI: 10.1016/j.biosystems.2025.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
A comprehensive review of the evolutionary mechanisms in plants has been performed. This review examines fundamental questions regarding plant evolution, including the development of sexes, convergent characteristics, and neutral effects in plant ecosystems. The available evidence suggests that plant evolution is not a random process, as previously hypothesized. Instead, a substantial body of evidence points to the existence of directed and predictable patterns in plant evolution, applicable not only to plants but also to other organisms. The concept of directed evolution is explored in the context of plant biology.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
3
|
Larsson D, Šarhanová P, Paun O, Schneeweiss GM. Recent Origin of a Range-Restricted Species With Subsequent Introgression in its Widespread Congener in the Phyteuma spicatum Group (Campanulaceae). Mol Ecol 2025; 34:e17624. [PMID: 39673088 PMCID: PMC11754710 DOI: 10.1111/mec.17624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024]
Abstract
Understanding the causes of restricted geographic distributions is of major interest to evolutionary and conservation biologists. Inferring historical factors has often relied on ad hoc interpretations of genetic data, and hypothesis testing within a statistical framework under different demographic scenarios remains underutilised. Using coalescent modelling on RAD-sequencing data, we (i) test hypotheses about the origin of Phyteuma gallicum (Campanulaceae), a range-restricted endemic of central France sympatric with its widespread congener Ph. spicatum, and (ii) date its origin, irrespective of its mode of origin, to test the hypothesis that the restricted range is due to a recent time of origin. The best supported model of origin is one of a dichotomous split of Ph. gallicum, confirmed as distinct species, and the Central European Ph. nigrum with subsequent gene flow between Ph. gallicum and Ph. spicatum. The split of Ph. gallicum and Ph. nigrum is estimated at 45-55,000 years ago. Coalescent modelling on genomic data not only clarified the mode of origin (dichotomous speciation instead of a previously hypothesised hybridogenic origin) but also identified recency of speciation as a sufficient, although likely not the sole, factor to explain the restricted distribution range. Coalescent modelling strongly improves our understanding of the evolution of range-restricted species that are frequently of conservation concern, as is the case for Ph. gallicum.
Collapse
Affiliation(s)
- Dennis Larsson
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Petra Šarhanová
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | |
Collapse
|
4
|
Szczepański S, Łabiszak B, Lasek M, Wachowiak W. Hybridization has localized effect on genetic variation in closely related pine species. BMC PLANT BIOLOGY 2024; 24:1007. [PMID: 39455923 PMCID: PMC11520059 DOI: 10.1186/s12870-024-05732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Hybridization is a known phenomenon in nature but its genetic impact on populations of parental species remains less understood. We investigated the evolutionary consequences of the interspecific gene flow in several contact zones of closely related pine species. Using a set of genetic markers from both nuclear and organellar genomes, we analyzed four hybrid zones (384 individuals) and a large panel of reference allopatric populations of parental taxa (2104 individuals from 96 stands). RESULTS We observed reduced genetic diversity in maternally transmitted mitochondrial genomes of pure pine species and hybrids from contact zones compared to reference allopatric populations. The distribution of mtDNA haplotypes followed geographic rather than species boundaries. Additionally, no new haplotypes emerged in the contact zones, instead these zones contained the most common local variants. However, species diverged significantly at nuclear genomes and populations in contact zones exhibited similar or higher genetic diversity compared to the reference stands. There were no signs of admixture in any allopatric population, while clear admixture was evident in the contact zones, indicating that hybridization has a geographically localized effect on the genetic variation of the analyzed pine species. CONCLUSIONS Our results suggest that hybrid zones act as sinks rather than melting pots of genetic diversity. Hybridization influences sympatric populations but is confined to contact zones. The spectrum of parental species ancestry in hybrids reflects the old evolutionary history of the sympatric populations. These findings also imply that introgression may play a crucial role in the adaptation of hybrids to specific environments.
Collapse
Affiliation(s)
- Sebastian Szczepański
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Bartosz Łabiszak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Martyna Lasek
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Witold Wachowiak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
5
|
Lucena-Perez M, Paijmans JLA, Nocete F, Nadal J, Detry C, Dalén L, Hofreiter M, Barlow A, Godoy JA. Recent increase in species-wide diversity after interspecies introgression in the highly endangered Iberian lynx. Nat Ecol Evol 2024; 8:282-292. [PMID: 38225424 DOI: 10.1038/s41559-023-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/10/2023] [Indexed: 01/17/2024]
Abstract
Genetic diversity is lost in small and isolated populations, affecting many globally declining species. Interspecific admixture events can increase genetic variation in the recipient species' gene pool, but empirical examples of species-wide restoration of genetic diversity by admixture are lacking. Here we present multi-fold coverage genomic data from three ancient Iberian lynx (Lynx pardinus) approximately 2,000-4,000 years old and show a continuous or recurrent process of interspecies admixture with the Eurasian lynx (Lynx lynx) that increased modern Iberian lynx genetic diversity above that occurring millennia ago despite its recent demographic decline. Our results add to the accumulating evidence for natural admixture and introgression among closely related species and show that this can result in an increase of species-wide genetic diversity in highly genetically eroded species. The strict avoidance of interspecific sources in current genetic restoration measures needs to be carefully reconsidered, particularly in cases where no conspecific source population exists.
Collapse
Affiliation(s)
- Maria Lucena-Perez
- Department of Ecology and Evolution, Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Johanna L A Paijmans
- Evolutionary Adaptive Genomics, University of Potsdam, Potsdam, Germany
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Francisco Nocete
- Grupo de Investigación MIDAS, Departamento Historia I (Prehistoria), Universidad de Huelva, Huelva, Spain
| | - Jordi Nadal
- SERP, Departament de Prehistoria, Historia Antiga i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| | - Cleia Detry
- UNIARQ - Centro de Arqueologia da Faculdade de Letras da Universidade de Lisboa, Alameda da Universidade, Lisbon, Portugal
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, University of Potsdam, Potsdam, Germany
| | - Axel Barlow
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, UK
| | - José A Godoy
- Department of Ecology and Evolution, Estación Biológica de Doñana, CSIC, Seville, Spain.
| |
Collapse
|
6
|
Olofsson JK, Tyler T, Dunning LT, Hjertson M, Rühling Å, Hansen AJ. Morphological and genetic evidence suggest gene flow among native and naturalized mint species. AMERICAN JOURNAL OF BOTANY 2024; 111:e16280. [PMID: 38334273 DOI: 10.1002/ajb2.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
PREMISE Cultivation and naturalization of plants beyond their natural range can bring previously geographically isolated taxa together, increasing the opportunity for hybridization, the outcomes of which are not predictable. Here, we explored the phenotypic and genomic effects of interspecific gene flow following the widespread cultivation of Mentha spicata (spearmint), M. longifolia, and M. suaveolens. METHODS We morphologically evaluated 155 herbarium specimens of three Mentha species and sequenced the genomes of a subset of 93 specimens. We analyzed the whole genomes in a population and the phylogenetic framework and associated genomic classifications in conjunction with the morphological assessments. RESULTS The allopolyploid M. spicata, which likely evolved in cultivation, had altered trichome characters, that is possibly a product of human selection for a more palatable plant or a byproduct of selection for essential oils. There were signs of genetic admixture between mints, including allopolyploids, indicating that the reproductive barriers between Mentha species with differences in ploidy are likely incomplete. Still, despite gene flow between species, we found that genetic variants associated with the cultivated trichome morphology continue to segregate. CONCLUSIONS Although hybridization, allopolyploidization, and human selection during cultivation can increase species richness (e.g., by forming hybrid taxa), we showed that unless reproductive barriers are strong, these processes can also result in mixing of genes between species and the potential loss of natural biodiversity.
Collapse
Affiliation(s)
- Jill K Olofsson
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
| | - Torbjörn Tyler
- Department of Biology, The Biological Museum, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
| | - Mats Hjertson
- Museum of Evolution, Botany, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - Åke Rühling
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
- Biological Museum, Gyllings väg 9, SE-572 36 Oskarshamn, Sverige
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K, 1353, Denmark
| |
Collapse
|
7
|
Howard-McCombe J, Jamieson A, Carmagnini A, Russo IRM, Ghazali M, Campbell R, Driscoll C, Murphy WJ, Nowak C, O'Connor T, Tomsett L, Lyons LA, Muñoz-Fuentes V, Bruford MW, Kitchener AC, Larson G, Frantz L, Senn H, Lawson DJ, Beaumont MA. Genetic swamping of the critically endangered Scottish wildcat was recent and accelerated by disease. Curr Biol 2023; 33:4761-4769.e5. [PMID: 37935118 DOI: 10.1016/j.cub.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The European wildcat population in Scotland is considered critically endangered as a result of hybridization with introduced domestic cats,1,2 though the time frame over which this gene flow has taken place is unknown. Here, using genome data from modern, museum, and ancient samples, we reconstructed the trajectory and dated the decline of the local wildcat population from viable to severely hybridized. We demonstrate that although domestic cats have been present in Britain for over 2,000 years,3 the onset of hybridization was only within the last 70 years. Our analyses reveal that the domestic ancestry present in modern wildcats is markedly over-represented in many parts of the genome, including the major histocompatibility complex (MHC). We hypothesize that introgression provides wildcats with protection against diseases harbored and introduced by domestic cats, and that this selection contributes to maladaptive genetic swamping through linkage drag. Using the case of the Scottish wildcat, we demonstrate the importance of local ancestry estimates to both understand the impacts of hybridization in wild populations and support conservation efforts to mitigate the consequences of anthropogenic and environmental change.
Collapse
Affiliation(s)
- Jo Howard-McCombe
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK.
| | - Alexandra Jamieson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, UK; Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany; School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | - Muhammad Ghazali
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK
| | - Ruairidh Campbell
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney OX13 5QL, UK; NatureScot, Great Glen House, Leachkin Road, Inverness IV3 8NW, UK
| | | | - William J Murphy
- Texas A&M University, Veterinary Integrative Biosciences, College Station, TX 77843, USA
| | - Carsten Nowak
- Senckenberg Research Institute and Natural History Museum, Center for Wildlife Genetics, 63571 Weimar, Germany
| | - Terry O'Connor
- BioArCh, Department of Archaeology, University of York, York YO10 5NG, UK
| | - Louise Tomsett
- Mammal Section, Science Department, Natural History Museum, London SW7 5BD, UK
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, UK; School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany; School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK.
| | - Daniel J Lawson
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
| | - Mark A Beaumont
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
8
|
Coimbra RTF, Winter S, Muneza A, Fennessy S, Otiende M, Mijele D, Masiaine S, Stacy-Dawes J, Fennessy J, Janke A. Genomic analysis reveals limited hybridization among three giraffe species in Kenya. BMC Biol 2023; 21:215. [PMID: 37833744 PMCID: PMC10576358 DOI: 10.1186/s12915-023-01722-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND In the speciation continuum, the strength of reproductive isolation varies, and species boundaries are blurred by gene flow. Interbreeding among giraffe (Giraffa spp.) in captivity is known, and anecdotal reports of natural hybrids exist. In Kenya, Nubian (G. camelopardalis camelopardalis), reticulated (G. reticulata), and Masai giraffe sensu stricto (G. tippelskirchi tippelskirchi) are parapatric, and thus, the country might be a melting pot for these taxa. We analyzed 128 genomes of wild giraffe, 113 newly sequenced, representing these three taxa. RESULTS We found varying levels of Nubian ancestry in 13 reticulated giraffe sampled across the Laikipia Plateau most likely reflecting historical gene flow between these two lineages. Although comparatively weaker signs of ancestral gene flow and potential mitochondrial introgression from reticulated into Masai giraffe were also detected, estimated admixture levels between these two lineages are minimal. Importantly, contemporary gene flow between East African giraffe lineages was not statistically significant. Effective population sizes have declined since the Late Pleistocene, more severely for Nubian and reticulated giraffe. CONCLUSIONS Despite historically hybridizing, these three giraffe lineages have maintained their overall genomic integrity suggesting effective reproductive isolation, consistent with the previous classification of giraffe into four species.
Collapse
Affiliation(s)
- Raphael T F Coimbra
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany.
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | | | | | | | | - Julian Fennessy
- Giraffe Conservation Foundation, Windhoek, Namibia
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
| |
Collapse
|
9
|
Kim JY, Hwang JE, Eo SH, Kang SG, Moon JC, Kim JA, Park JY, An J, Yeo Y, Yoon J. Development of InDel markers for interspecific hybridization between hill pigeons and feral pigeons based on whole-genome re-sequencing. Sci Rep 2022; 12:22618. [PMID: 36585442 PMCID: PMC9803650 DOI: 10.1038/s41598-022-27147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Interspecific hybridization occurs among birds, and closely related sister taxa tend to hybridize at a high rate. Genomic hybridization markers are useful for understanding the patterns and processes of hybridization and for conserving endangered species in captivity and the wild. In this study, we developed genomic hybridization markers for the F1 progeny of the sister taxa feral pigeons (Columba livia var. domestica) and endangered hill pigeons (Columba rupestris) (family Columbidae). Using whole-genome re-sequencing data, we performed genome-wide analysis for insertion/deletion (InDel) polymorphisms and validated using primers. We conducted polymerase chain reaction (PCR) and agarose gel electrophoresis to identify species-specific InDels. We produced eight F1 hybrids of hill and feral pigeons, and their samples were tested by re-performing analyses and sequencing using 11 species-specific InDel polymorphisms. Eight InDel markers simultaneously amplified two DNA fragments from all F1 hybrids, and there was no abnormality in the sequencing results. The application of genomic tools to detect hybrids can play a crucial role in the assessment of hybridization frequency in the wild. Moreover, systematic captive propagation efforts with hybrids can help control the population decline of hill pigeons.
Collapse
Affiliation(s)
- Jin-Yong Kim
- grid.496435.90000 0004 6015 2014Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| | - Jung Eun Hwang
- grid.496435.90000 0004 6015 2014Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| | - Soo Hyung Eo
- grid.411118.c0000 0004 0647 1065Department of Forest Science, Kongju National University, Yesan, Chungnam, South Korea
| | - Seung-Gu Kang
- grid.496435.90000 0004 6015 2014Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| | - Jeong Chan Moon
- grid.496435.90000 0004 6015 2014Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| | - Jung A Kim
- grid.419519.10000 0004 0400 5474National Institute of Biological Resources, Incheon, South Korea
| | - Jin-Young Park
- grid.419519.10000 0004 0400 5474National Institute of Biological Resources, Incheon, South Korea
| | - Junghwa An
- grid.419519.10000 0004 0400 5474National Institute of Biological Resources, Incheon, South Korea
| | - Yonggu Yeo
- Conservation and Health Center, Seoul Zoo, Gwacheon, South Korea
| | - Jongmin Yoon
- grid.496435.90000 0004 6015 2014Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| |
Collapse
|
10
|
Ge D, Wen Z, Feijó A, Lissovsky A, Zhang W, Cheng J, Yan C, She H, Zhang D, Cheng Y, Lu L, Wu X, Mu D, Zhang Y, Xia L, Qu Y, Vogler AP, Yang Q. Genomic Consequences of and Demographic Response to Pervasive Hybridization Over Time in Climate-Sensitive Pikas. Mol Biol Evol 2022; 40:6958644. [PMID: 36562771 PMCID: PMC9847633 DOI: 10.1093/molbev/msac274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rare and geographically restricted species may be vulnerable to genetic effects from inbreeding depression in small populations or from genetic swamping through hybridization with common species, but a third possibility is that selective gene flow can restore fitness (genetic rescue). Climate-sensitive pikas (Ochotona spp.) of the Qinghai-Tibetan Plateau (QHTP) and its vicinity have been reduced to residual populations through the movement of climatic zones during the Pleistocene and recent anthropogenic disturbance, whereas the plateau pika (O. curzoniae) remains common. Population-level whole-genome sequencing (n = 142) of six closely related species in the subgenus Ochotona revealed several phases of ancient introgression, lineage replacement, and bidirectional introgression. The strength of gene flow was the greatest from the dominant O. curzoniae to ecologically distinct species in areas peripheral to the QHTP. Genetic analyses were consistent with environmental reconstructions of past population movements. Recurrent periods of introgression throughout the Pleistocene revealed an increase in genetic variation at first but subsequent loss of genetic variation in later phases. Enhanced dispersion of introgressed genomic regions apparently contributed to demographic recovery in three peripheral species that underwent range shifts following climate oscillations on the QHTP, although it failed to drive recovery of northeastern O. dauurica and geographically isolated O. sikimaria. Our findings highlight differences in timescale and environmental background to determine the consequence of hybridization and the unique role of the QHTP in conserving key evolutionary processes of sky island species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinlai Wu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Danping Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yubo Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
11
|
Zander KK, Burton M, Pandit R, Gunawardena A, Pannell D, Garnett ST. How public values for threatened species are affected by conservation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115659. [PMID: 35820310 DOI: 10.1016/j.jenvman.2022.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
While the imminent extinction of many species is predicted, prevention is expensive, and decision-makers often have to prioritise funding. In democracies, it can be argued that conservation using public funds should be influenced by the values placed on threatened species by the public, and that community views should also affect the conservation management approaches adopted. We conducted on online survey with 2400 respondents from the general Australian public to determine 1) the relative values placed on a diverse set of 12 threatened Australian animal species and 2) whether those values changed with the approach proposed to conserve them. The survey included a contingent valuation and a choice experiment. Three notable findings emerged: 1) respondents were willing to pay $60/year on average for a species (95% confidence interval: $23 to $105) to avoid extinction in the next 20 years based on the contingent valuation, and $29 to $100 based on the choice experiment, 2) respondents were willing to pay to reduce the impact of feral animals on almost all presented threatened species, 3) for few species and respondents, WTP was lower when genetic modification to reduce inbreeding in the remaining population was proposed.
Collapse
Affiliation(s)
| | - Michael Burton
- School of Agriculture and Environment, University of Western Australia, Australia
| | - Ram Pandit
- School of Agriculture and Environment, University of Western Australia, Australia
| | - Asha Gunawardena
- School of Agriculture and Environment, University of Western Australia, Australia
| | - David Pannell
- School of Agriculture and Environment, University of Western Australia, Australia
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Australia
| |
Collapse
|
12
|
Etherington GJ, Ciezarek A, Shaw R, Michaux J, Croose E, Haerty W, Di Palma F. Extensive genome introgression between domestic ferret and European polecat during population recovery in Great Britain. J Hered 2022; 113:500-515. [PMID: 35932226 PMCID: PMC9584812 DOI: 10.1093/jhered/esac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
The European polecat (Mustela putorius) is a mammalian predator which occurs across much of Europe east to the Ural Mountains. In Great Britain, following years of persecution the range of the European polecat contracted and by the early 1900s was restricted to unmanaged forests of central Wales. The European polecat has recently undergone a population increase due to legal protection and its range now overlaps that of feral domestic ferrets (Mustela putorius furo). During this range expansion, European polecats hybridized with feral domestic ferrets producing viable offspring. Here, we carry out population-level whole-genome sequencing on 8 domestic ferrets, 19 British European polecats, and 15 European polecats from the European mainland. We used a range of population genomics methods to examine the data, including phylogenetics, phylogenetic graphs, model-based clustering, phylogenetic invariants, ABBA-BABA tests, topology weighting, and Fst. We found high degrees of genome introgression in British polecats outside their previous stronghold, even in those individuals phenotyped as “pure” polecats. These polecats ranged from presumed F1 hybrids (gamma = 0.53) to individuals that were much less introgressed (gamma = 0.2). We quantify this introgression and find introgressed genes containing Fst outliers associated with cognitive function and sight.
Collapse
Affiliation(s)
| | - Adam Ciezarek
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Rebecca Shaw
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Johan Michaux
- Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | | | | | - Federica Di Palma
- The Earlham Institute, Norwich Research Park, Norwich, UK.,Department of Biological Sciences, University of East Anglia, Norwich, UK.,Genome British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Smith WJ, Quilodrán CS, Jezierski MT, Sendell-Price AT, Clegg SM. The wild ancestors of domestic animals as a neglected and threatened component of biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13867. [PMID: 34811819 DOI: 10.1111/cobi.13867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Domestic animals have immense economic, cultural, and practical value and have played pivotal roles in the development of human civilization. Many domesticates have, among their wild relatives, undomesticated forms representative of their ancestors. Resurgent interest in these ancestral forms has highlighted the unclear genetic status of many, and some are threatened with extinction by hybridization with domestic conspecifics. We considered the contemporary status of these ancestral forms relative to their scientific, practical, and ecological importance; the varied impacts of wild-domestic hybridization; and the challenges and potential resolutions involved in conservation efforts. Identifying and conserving ancestral forms, particularly with respect to disentangling patterns of gene flow from domesticates, is complex because of the lack of available genomic and phenotypic baselines. Comparative behavioral, ecological, and genetic studies of ancestral-type, feral, and domestic animals should be prioritized to establish the contemporary status of the former. Such baseline information will be fundamental in ensuring successful conservation efforts.
Collapse
Affiliation(s)
- William J Smith
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Claudio S Quilodrán
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Michał T Jezierski
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Werhahn G, Senn H, Macdonald DW, Sillero-Zubiri C. The Diversity in the Genus Canis Challenges Conservation Biology: A Review of Available Data on Asian Wolves. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.782528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taxa belonging to the Genus Canis can challenge taxonomists because species boundaries and distribution ranges are often gradual. Species delineation within Canis is currently not based on consistent criteria, and is hampered by geographical bias and lack of taxonomic research. But a consistent taxonomy is critical, given its importance for assigning legal protection, conservation priorities, and financial resources. We carried out a qualitative review of the major wolf lineages so far identified from Asia from historical to contemporary time and considered relevant morphological, ecological, and genetic evidence. We present full mitochondrial phylogenies and genetic distances between these lineages. This review aims to summarize the available data on contemporary Asian wolf lineages within the context of the larger phylogenetic Canis group and to work toward a taxonomy that is consistent within the Canidae. We found support for the presence and taxon eligibility of Holarctic gray, Himalayan/Tibetan, Indian, and Arabian wolves in Asia and recommend their recognition at the taxonomic levels consistent within the group.
Collapse
|
15
|
Buck R, Flores-Rentería L. The Syngameon Enigma. PLANTS (BASEL, SWITZERLAND) 2022; 11:895. [PMID: 35406874 PMCID: PMC9002738 DOI: 10.3390/plants11070895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 05/17/2023]
Abstract
Despite their evolutionary relevance, multispecies networks or syngameons are rarely reported in the literature. Discovering how syngameons form and how they are maintained can give insight into processes such as adaptive radiations, island colonizations, and the creation of new hybrid lineages. Understanding these complex hybridization networks is even more pressing with anthropogenic climate change, as syngameons may have unique synergistic properties that will allow participating species to persist. The formation of a syngameon is not insurmountable, as several ways for a syngameon to form have been proposed, depending mostly on the magnitude and frequency of gene flow events, as well as the relatedness of its participants. Episodic hybridization with small amounts of introgression may keep syngameons stable and protect their participants from any detrimental effects of gene flow. As genomic sequencing becomes cheaper and more species are included in studies, the number of known syngameons is expected to increase. Syngameons must be considered in conservation efforts as the extinction of one participating species may have detrimental effects on the survival of all other species in the network.
Collapse
Affiliation(s)
- Ryan Buck
- Department of Biology, San Diego State University, San Diego, CA 92182, USA;
| | | |
Collapse
|
16
|
Combe FJ, Jaster L, Ricketts A, Haukos D, Hope AG. Population genomics of free-ranging Great Plains white-tailed and mule deer reflects a long history of interspecific hybridization. Evol Appl 2022; 15:111-131. [PMID: 35126651 PMCID: PMC8792484 DOI: 10.1111/eva.13330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Hybridization is a natural process at species-range boundaries that may variably promote the speciation process or break down species barriers but minimally will influence management outcomes of distinct populations. White-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) have broad and overlapping distributions in North America and a recognized capacity for interspecific hybridization. In response to contemporary environmental change to any of one or multiple still-unknown factors, mule deer range is contracting westward accompanied by a westward expansion of white-tailed deer, leading to increasing interactions, opportunities for gene flow, and associated conservation implications. To quantify genetic diversity, phylogenomic structure, and dynamics of hybridization in sympatric populations of white-tailed and mule deer, we used mitochondrial cytochrome b data coupled with SNP loci discovered with double-digest restriction site-associated DNA sequencing. We recovered 25,018 SNPs across 92 deer samples from both species, collected from two regions of western Kansas. Eight individuals with unambiguous external morphology representing both species were of hybrid origin (8.7%), and represented the product of multi-generational backcrossing. Mitochondrial data showed both ancient and recent directional discordance with morphological species assignments, reflecting a legacy of mule deer males mating with white-tailed deer females. Mule deer had lower genetic diversity than white-tailed deer, and both mitochondrial and nuclear data suggest contemporary mule deer effective population decline. Landscape genetic analyses show relative isolation between the two study regions for white-tailed deer, but greater connectivity among mule deer, with predominant movement from north to south. Collectively, our results suggest a long history of gene flow between these species in the Great Plains and hint at evolutionary processes that purge incompatible functional genomic elements as a result of hybridization. Surviving hybrids evidently may be reproductive, but with unknown consequences for the future integrity of these species, population trajectories, or relative susceptibility to emerging pathogens.
Collapse
Affiliation(s)
- Fraser J. Combe
- Division of BiologyKansas State UniversityManhattanKansasUSA
| | - Levi Jaster
- Kansas Department of Wildlife and ParksTopekaKansasUSA
| | - Andrew Ricketts
- Department of Horticulture and Natural Sciences, Wildlife and Outdoor Enterprise ManagementKansas State UniversityManhattanKansasUSA
| | - David Haukos
- Division of BiologyU.S. Geological SurveyKansas Cooperative Fish and Wildlife Research UnitKansas State UniversityManhattanKansasUSA
| | - Andrew G. Hope
- Division of BiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
17
|
Adavoudi R, Pilot M. Consequences of Hybridization in Mammals: A Systematic Review. Genes (Basel) 2021; 13:50. [PMID: 35052393 PMCID: PMC8774782 DOI: 10.3390/genes13010050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Hybridization, defined as breeding between two distinct taxonomic units, can have an important effect on the evolutionary patterns in cross-breeding taxa. Although interspecific hybridization has frequently been considered as a maladaptive process, which threatens species genetic integrity and survival via genetic swamping and outbreeding depression, in some cases hybridization can introduce novel adaptive variation and increase fitness. Most studies to date focused on documenting hybridization events and analyzing their causes, while relatively little is known about the consequences of hybridization and its impact on the parental species. To address this knowledge gap, we conducted a systematic review of studies on hybridization in mammals published in 2010-2021, and identified 115 relevant studies. Of 13 categories of hybridization consequences described in these studies, the most common negative consequence (21% of studies) was genetic swamping and the most common positive consequence (8%) was the gain of novel adaptive variation. The total frequency of negative consequences (49%) was higher than positive (13%) and neutral (38%) consequences. These frequencies are biased by the detection possibilities of microsatellite loci, the most common genetic markers used in the papers assessed. As negative outcomes are typically easier to demonstrate than positive ones (e.g., extinction vs hybrid speciation), they may be over-represented in publications. Transition towards genomic studies involving both neutral and adaptive variation will provide a better insight into the real impacts of hybridization.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland;
| |
Collapse
|
18
|
Fournier D, Aron S. Hybridization and invasiveness in social insects - The good, the bad and the hybrid. CURRENT OPINION IN INSECT SCIENCE 2021; 46:1-9. [PMID: 33484875 DOI: 10.1016/j.cois.2020.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Hybridization may help drive biological invasions by reducing Allee effects, increasing genetic variation, and generating novel adaptive genotypes/phenotypes. Social insects (ants, bees, wasps, and termites) are among the world's worst invasive species. In this review, we study the relationship between hybridization and invasiveness in social insects. We examine three types of hybridization based on the reproductive characteristics of first-generation hybrids. We discuss several examples of the association between hybridization and invasiveness, which are predominantly found in bees and termites. However, hybridization also occurs in several non-invasive species, and highly invasive species are not consistently associated with hybridization events, indicating that hybridization is not a main driver of invasiveness in social insects. We discuss why hybridization is not more commonly seen in invasive social insects.
Collapse
Affiliation(s)
- Denis Fournier
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
19
|
Suvorov A, Scornavacca C, Fujimoto MS, Bodily P, Clement M, Crandall KA, Whiting MF, Schrider DR, Bybee SM. Deep ancestral introgression shapes evolutionary history of dragonflies and damselflies. Syst Biol 2021; 71:526-546. [PMID: 34324671 PMCID: PMC9017697 DOI: 10.1093/sysbio/syab063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Introgression is an important biological process affecting at least 10% of the extant species in the animal kingdom. Introgression significantly impacts inference of phylogenetic species relationships where a strictly binary tree model cannot adequately explain reticulate net-like species relationships. Here we use phylogenomic approaches to understand patterns of introgression along the evolutionary history of a unique, non-model insect system: dragonflies and damselflies (Odonata). We demonstrate that introgression is a pervasive evolutionary force across various taxonomic levels within Odonata. In particular, we show that the morphologically "intermediate" species of Anisozygoptera (one of the three primary suborders within Odonata besides Zygoptera and Anisoptera), which retain phenotypic characteristics of the other two suborders, experienced high levels of introgression likely coming from zygopteran genomes. Additionally, we find evidence for multiple cases of deep inter-superfamilial ancestral introgression.
Collapse
Affiliation(s)
- Anton Suvorov
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Celine Scornavacca
- Institut des Sciences de l'Evolution Université de Montpellier, CNRS, IRD, EPHE CC 064, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - M Stanley Fujimoto
- Department of Computer Science, Brigham Young University, Provo, UT, United States
| | - Paul Bodily
- Department of Computer Science, Idaho State University, Pocatello, ID, United States
| | - Mark Clement
- Department of Computer Science, Brigham Young University, Provo, UT, United States
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Michael F Whiting
- Department of Biology, Brigham Young University, Provo, UT, United States.,M.L. Bean Museum, Brigham Young University, Provo, UT, United States
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, United States.,M.L. Bean Museum, Brigham Young University, Provo, UT, United States
| |
Collapse
|
20
|
Palmer A, Sommer V, Msindai JN. Hybrid apes in the Anthropocene: Burden or asset for conservation? PEOPLE AND NATURE 2021; 3:573-586. [PMID: 34805779 PMCID: PMC8581989 DOI: 10.1002/pan3.10214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
Conservationists often view hybrid animals as problematic, at least if anthropogenic influence caused the intermixing to occur. However, critics propose that humans should respect non-human autonomy, reject and accept the creatures they have helped to create.Based on two case studies of our own ethological, genetic and ethnographic research about chimpanzee and orangutan subspecies hybrids, we assess what, if anything, should be done about such animals. We consider problems posed by cross-bred apes relating to: (a) Breeding-Do hybrids really experience reduced reproductive success? How are population-level concerns and welfare of individual animals balanced in conservation breeding? (b) Essentialism-Are anti-hybrid arguments based on essentialist or purist thinking? Does essentialism vary by conservation context? (c) Pragmatism-How do socio-economic circumstances influence whether hybrids are embraced or ignored? Does the erosion of 'untouched nature' render hybrids more important?We show that answers to these questions are complex and context-specific, and that therefore decisions should be made on a case-by-case basis. For example, we find that anti-hybrid arguments are essentialist in some cases (e.g. ape management in zoos) but not in others (e.g. ape reintroduction). Thus, rather than present recommendations, we conclude by posing nine questions that conservationists should ask themselves when making decisions about taxonomic hybrids. A free Plain Language Summary can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Alexandra Palmer
- School of Geography and the EnvironmentUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
21
|
Draper D, Laguna E, Marques I. Demystifying Negative Connotations of Hybridization for Less Biased Conservation Policies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.637100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interspecific hybridization is one of the most controversial—and usually neglected—issues in conservation due to its multiple evolutionary consequences that might include the origin and transfer of adaptations, the blur of distinctive lineages or the formation of maladaptive hybrids. However, despite different outcomes, most conservation laws do not offer any possibility of hybrids being protected since they are perceived as a threat to the survival of pure species. We assessed how much hybridization has contributed to species extinction considering all IUCN Red Data assessments. However, we found that it has been scarcely reported as a threat contributing to extinction: only 11 extinct species out of 120,369 assessments mentioned hybridization. Although the causes that contribute to species extinctions should be controlled, the reasons for not conserving hybrids seem subjective rather than empirically supported. In a genomic era where hybridization is being more frequently detected, the debate involving the conservation of hybrids should be re-opened. Should we conserve hybrids despite the possibility of gene flow with parental species? Should we protect only natural hybrids? The resolution of this debate goes to the heart of what we mean to conserve and the time scale of conservation. But hybridization is part of the evolutionary process and might even increase in the future due to human-induced changes. As such, it becomes clear that we need to move beyond the causes and instead tackle the consequences of hybridization to create environmental policies for the management of hybrids, considering both positive and negative consequences.
Collapse
|
22
|
Hoffmann AA, Miller AD, Weeks AR. Genetic mixing for population management: From genetic rescue to provenancing. Evol Appl 2021; 14:634-652. [PMID: 33767740 PMCID: PMC7980264 DOI: 10.1111/eva.13154] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Animal and plant species around the world are being challenged by the deleterious effects of inbreeding, loss of genetic diversity, and maladaptation due to widespread habitat destruction and rapid climate change. In many cases, interventions will likely be needed to safeguard populations and species and to maintain functioning ecosystems. Strategies aimed at initiating, reinstating, or enhancing patterns of gene flow via the deliberate movement of genotypes around the environment are generating growing interest with broad applications in conservation and environmental management. These diverse strategies go by various names ranging from genetic or evolutionary rescue to provenancing and genetic resurrection. Our aim here is to provide some clarification around terminology and to how these strategies are connected and linked to underlying genetic processes. We draw on case studies from the literature and outline mechanisms that underlie how the various strategies aim to increase species fitness and impact the wider community. We argue that understanding mechanisms leading to species decline and community impact is a key to successful implementation of these strategies. We emphasize the need to consider the nature of source and recipient populations, as well as associated risks and trade-offs for the various strategies. This overview highlights where strategies are likely to have potential at population, species, and ecosystem scales, but also where they should probably not be attempted depending on the overall aims of the intervention. We advocate an approach where short- and long-term strategies are integrated into a decision framework that also considers nongenetic aspects of management.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVic.Australia
| | - Adam D. Miller
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWarrnamboolVic.Australia
- Deakin Genomics CentreDeakin UniversityGeelongVic.Australia
| | - Andrew R. Weeks
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVic.Australia
- cesar Pty LtdParkvilleVic.Australia
| |
Collapse
|