1
|
Mule SN, Alemán EV, Rosa-Fernandes L, Saad JS, de Oliveira GS, Martins D, Angeli CB, Brandt-Almeida D, Cortez M, Larsen MR, Shaw JJ, Teixeira MMG, Palmisano G. Leishmaniinae: Evolutionary inferences based on protein expression profiles (PhyloQuant) congruent with phylogenetic relationships among Leishmania, Endotrypanum, Porcisia, Zelonia, Crithidia, and Leptomonas. Proteomics 2024; 24:e2100313. [PMID: 38850190 DOI: 10.1002/pmic.202100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 06/10/2024]
Abstract
Evolutionary relationships among parasites of the subfamily Leishmaniinae, which comprises pathogen agents of leishmaniasis, were inferred based on differential protein expression profiles from mass spectrometry-based quantitative data using the PhyloQuant method. Evolutionary distances following identification and quantification of protein and peptide abundances using Proteome Discoverer and MaxQuant software were estimated for 11 species from six Leishmaniinae genera. Results clustered all dixenous species of the genus Leishmania, subgenera L. (Leishmania), L. (Viannia), and L. (Mundinia), sister to the dixenous species of genera Endotrypanum and Porcisia. Placed basal to the assemblage formed by all these parasites were the species of genera Zelonia, Crithidia, and Leptomonas, so far described as monoxenous of insects although eventually reported from humans. Inferences based on protein expression profiles were congruent with currently established phylogeny using DNA sequences. Our results reinforce PhyloQuant as a valuable approach to infer evolutionary relationships within Leishmaniinae, which is comprised of very tightly related trypanosomatids that are just beginning to be phylogenetically unraveled. In addition to evolutionary history, mapping of species-specific protein expression is paramount to understand differences in infection processes, tissue tropisms, potential to jump from insects to vertebrates including humans, and targets for species-specific diagnostic and drug development.
Collapse
Affiliation(s)
- Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evaristo Villalba Alemán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joyce S Saad
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Deivid Martins
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deborah Brandt-Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark
| | - Jeffrey J Shaw
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Sánchez Reyes A, Ayala-Ruan C. On the PhyloQuant protein expression profiles approach to the taxonomic problem. Proteomics 2024; 24:e2400117. [PMID: 39148212 DOI: 10.1002/pmic.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 08/17/2024]
Abstract
Inferring evolutionary relationships among organisms has been a fundamental problem in evolutionary biology. The current phylogenetic molecular methods serve as the baseline model to test new evolutionary hypotheses with taxonomic purposes. Leishmaniinae trypanosomatids subfamily includes protozoan parasites of clinical importance to humans. They have an intricate taxonomic history defined by morphological elements, host range, and molecular phylogenies. Unraveling the increasing diversity of this group has shown limitations in reconstructing the true evolutionary relationships among Trypanosomatidae species. Toward the goal of inferring evolutionary relationships that help to resolve phylogenetic and taxonomic controversies among parasites of the subfamily Leishmaniinae, Mule et al. propose the method PhyloQuant as a valuable approach, based on differential protein expression obtained from high throughput mass spectrometry data. Employing a pioneering methodological approach, Mule et al. assess the taxonomic problem for species hypothesis within Leishmaniinae, from quantitative phenetic protein expression profiles, in contrast to the standard multilocus phylogenetic approaches.
Collapse
Affiliation(s)
- Ayixon Sánchez Reyes
- Investigador por México-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Cesar Ayala-Ruan
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
San Francisco J, Astudillo C, Vega JL, Catalán A, Gutiérrez B, Araya JE, Zailberger A, Marina A, García C, Sanchez N, Osuna A, Vilchez S, Ramírez MI, Macedo J, Feijoli VS, Palmisano G, González J. Trypanosoma cruzi pathogenicity involves virulence factor expression and upregulation of bioenergetic and biosynthetic pathways. Virulence 2022; 13:1827-1848. [PMID: 36284085 PMCID: PMC9601562 DOI: 10.1080/21505594.2022.2132776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The molecular repertoire of Trypanosoma cruzi effects its virulence and impacts the clinical course of the resulting Chagas disease. This study aimed to determine the mechanism underlying the pathogenicity of T. cruzi. Two T. cruzi cell lines (C8C3hvir and C8C3lvir), obtained from the clone H510 C8C3 and exhibiting different virulence phenotypes, were used to evaluate the parasite's infectivity in mice. The organ parasite load was analysed by qPCR. The proteomes of both T. cruzi cell lines were compared using nLC-MS/MS. Cruzipain (Czp), complement regulatory protein (CRP), trans-sialidase (TS), Tc-85, and sialylated epitope expression levels were evaluated by immunoblotting. High-virulence C8C3hvir was highly infectious in mice and demonstrated three to five times higher infectivity in mouse myocardial cells than low-virulence C8C3lvir. qPCR revealed higher parasite loads in organs of acute as well as chronically C8C3hvir-infected mice than in those of C8C3lvir-infected mice. Comparative quantitative proteomics revealed that 390 of 1547 identified proteins were differentially regulated in C8C3hvir with respect to C8C3lvir. Amongst these, 174 proteins were upregulated in C8C3hvir and 216 were downregulated in C8C3lvir. The upregulated proteins in C8C3hvir were associated with the tricarboxylic acid cycle, ribosomal proteins, and redoxins. Higher levels of Czp, CRP, TS, Tc-85, and sialylated epitopes were expressed in C8C3hvir than in C8C3lvir. Thus, T. cruzi virulence may be related to virulence factor expression as well as upregulation of bioenergetic and biosynthetic pathways proteins.
Collapse
Affiliation(s)
- Juan San Francisco
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Constanza Astudillo
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - José Luis Vega
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile,Laboratory of Gap Junction Proteins and Parasitic Disease, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile,Research Center in Immunology and Biomedical Biotechnology of Antofagasta, Antofagasta, Chile
| | - Alejandro Catalán
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Bessy Gutiérrez
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Jorge E Araya
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | | | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos García
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Nuria Sanchez
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Antonio Osuna
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Susana Vilchez
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Marcel I Ramírez
- Laboratório de Biologia Molecular e Sistemática de Trypanosomatides, Instituto Carlos Chagas, Fiocruz, Parana, Brazil
| | - Janaina Macedo
- Department of Parasitology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Jorge González
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile,Research Center in Immunology and Biomedical Biotechnology of Antofagasta, Antofagasta, Chile,Laboratório de Biologia Molecular e Sistemática de Trypanosomatides, Millennium Institute on Immunology and Immunotherapy, Antofagasta, Chile,CONTACT Jorge González
| |
Collapse
|