1
|
Gilad Y, Shimon O, Han SJ, Lonard DM, O’Malley BW. Steroid receptor coactivators in Treg and Th17 cell biology and function. Front Immunol 2024; 15:1389041. [PMID: 38698860 PMCID: PMC11063348 DOI: 10.3389/fimmu.2024.1389041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Steroid receptor coactivators (SRCs) are master regulators of transcription that play key roles in human physiology and pathology. SRCs are particularly important for the regulation of the immune system with major roles in lymphocyte fate determination and function, macrophage activity, regulation of nuclear factor κB (NF-κB) transcriptional activity and other immune system biology. The three members of the p160 SRC family comprise a network of immune-regulatory proteins that can function independently or act in synergy with each other, and compensate for - or moderate - the activity of other SRCs. Recent evidence indicates that the SRCs are key participants in governing numerous aspects of CD4+ T cell biology. Here we review findings that establish the SRCs as essential regulators of regulatory T cells (Tregs) and T helper 17 (Th17) cells, with a focus on their crucial roles in Treg immunity in cancer and Treg-Th17 cell phenotypic plasticity.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Ortal Shimon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Lu D, Chen J, Qin L, Bijou I, Yi P, Li F, Song X, Mackenzie KR, Yu X, Yang B, Chowdhury SR, Korp JD, O’Malley BW, Lonard DM, Wang J. Lead Compound Development of SRC-3 Inhibitors with Improved Pharmacokinetic Properties and Anticancer Efficacy. J Med Chem 2024; 67:5333-5350. [PMID: 38551814 PMCID: PMC11105966 DOI: 10.1021/acs.jmedchem.3c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Steroid receptor coactivator 3 (SRC-3) is a critical mediator of many intracellular signaling pathways that are crucial for cancer proliferation and metastasis. In this study, we performed structure-activity relationship exploration and drug-like optimization of the hit compound SI-2, guided by in vitro/in vivo metabolism studies and cytotoxicity assays. Our efforts led to the discovery of two lead compounds, SI-10 and SI-12. Both compounds exhibit potent cytotoxicity against a panel of human cancer cell lines and demonstrate acceptable pharmacokinetic properties. A biotinylated estrogen response element pull-down assay demonstrated that SI-12 could disrupt the recruitment of SRC-3 and p300 in the estrogen receptor complex. Importantly, SI-10 and SI-12 significantly inhibited tumor growth and metastasis in vivo without appreciable acute toxicity. These results demonstrate the potential of SI-10 and SI-12 as drug candidates for cancer therapy, given their potent SRC-3 inhibition and promising pharmacokinetic and toxicity profiles.
Collapse
Affiliation(s)
- Dong Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Jianwei Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Imani Bijou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Ping Yi
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
- Department of Biology and Biochemistry, University of Houston, TX 77205
| | - Feng Li
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Xianzhou Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Kevin R. Mackenzie
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Xin Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Bin Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Sandipan Roy Chowdhury
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - James D. Korp
- Department of Chemistry, University of Houston, TX 77204
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
3
|
Blanchard Z, Rush CM, Arnesen S, Vahrenkamp JM, Rodriguez AC, Jarboe EA, Brown C, Chang MEK, Flory MR, Mohammed H, Modzelewska K, Lum DH, Gertz J. Allele-Specific Gene Regulation, Phenotypes, and Therapeutic Vulnerabilities in Estrogen Receptor Alpha-Mutant Endometrial Cancer. Mol Cancer Res 2023; 21:1023-1036. [PMID: 37363949 DOI: 10.1158/1541-7786.mcr-22-0848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Activating estrogen receptor alpha (ER; also known as ESR1) mutations are present in primary endometrial and metastatic breast cancers, promoting estrogen-independent activation of the receptor. Functional characterizations in breast cancer have established unique molecular and phenotypic consequences of the receptor, yet the impact of ER mutations in endometrial cancer has not been fully explored. In this study, we used CRISPR-Cas9 to model the clinically prevalent ER-Y537S mutation and compared results with ER-D538G to discover allele-specific differences between ER mutations in endometrial cancer. We found that constitutive activity of mutant ER resulted in changes in the expression of thousands of genes, stemming from combined alterations to ER binding and chromatin accessibility. The unique gene expression programs resulted in ER-mutant cells developing increased cancer-associated phenotypes, including migration, invasion, anchorage-independent growth, and growth in vivo. To uncover potential treatment strategies, we identified ER-associated proteins via Rapid Immunoprecipitation and Mass Spectrometry of Endogenous Proteins and interrogated two candidates, CDK9 and NCOA3. Inhibition of these regulatory proteins resulted in decreased growth and migration, representing potential novel treatment strategies for ER-mutant endometrial cancer. IMPLICATIONS This study provides insight into mutant ER activity in endometrial cancer and identifies potential therapies for women with ER-mutant endometrial cancer.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Craig M Rush
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Adriana C Rodriguez
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elke A Jarboe
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Callie Brown
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Matthew E K Chang
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Mark R Flory
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Hisham Mohammed
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Katarzyna Modzelewska
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
4
|
Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. SCIENCE ADVANCES 2023; 9:eadd3685. [PMID: 37172090 PMCID: PMC10181187 DOI: 10.1126/sciadv.add3685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to estrogen-independent remains unclear. With a genome-wide CRISPR-Cas9 knockout screen, we identified previously unknown biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We find that this may be due to elevated activities of cAMP-activated protein kinase A and mTOR, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Addition of purines renders them more resistant. On the basis of these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| |
Collapse
|
5
|
Hany D, Zoetemelk M, Bhattacharya K, Nowak-Sliwinska P, Picard D. Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell Mol Life Sci 2023; 80:80. [PMID: 36869202 PMCID: PMC10032341 DOI: 10.1007/s00018-023-04730-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21311, Egypt
| | - Marloes Zoetemelk
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Patrycja Nowak-Sliwinska
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland.
| |
Collapse
|
6
|
Gilad Y, Lonard DM, O’Malley BW. Steroid receptor coactivators - their role in immunity. Front Immunol 2022; 13:1079011. [PMID: 36582250 PMCID: PMC9793089 DOI: 10.3389/fimmu.2022.1079011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Steroid Receptor Coactivators (SRCs) are essential regulators of transcription with a wide range of impact on human physiology and pathology. In immunology, SRCs play multiple roles; they are involved in the regulation of nuclear factor-κB (NF-κB), macrophage (MΦ) activity, lymphoid cells proliferation, development and function, to name just a few. The three SRC family members, SRC-1, SRC-2 and SRC-3, can exert their immunological function either in an independent manner or act in synergy with each other. In certain biological contexts, one SRC family member can compensate for lack of activity of another member, while in other cases one SRC can exert a biological function that competes against the function of another family counterpart. In this review we illustrate the diverse biological functionality of the SRCs with regard to their role in immunity. In the light of recent development of SRC small molecule inhibitors and stimulators, we discuss their potential relevance as modulators of the immunological activity of the SRCs for therapeutic purposes.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| |
Collapse
|
7
|
Target expression is a relevant factor in synthetic lethal screens. Commun Biol 2022; 5:835. [PMID: 35986164 PMCID: PMC9391323 DOI: 10.1038/s42003-022-03746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
|