1
|
Zhang YX, Lv J, Bai JY, Pu X, Dai EL. Identification of key biomarkers of the glomerulus in focal segmental glomerulosclerosis and their relationship with immune cell infiltration based on WGCNA and the LASSO algorithm. Ren Fail 2023; 45:2202264. [PMID: 37096442 PMCID: PMC10132234 DOI: 10.1080/0886022x.2023.2202264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
OBJECTIVE The aim of our study was to identify key biomarkers of glomeruli in focal glomerulosclerosis (FSGS) and analyze their relationship with the infiltration of immune cells. METHODS The expression profiles (GSE108109 and GSE200828) were obtained from the GEO database. The differentially expressed genes (DEGs) were filtered and analyzed by gene set enrichment analysis (GSEA). MCODE module was constructed. Weighted gene coexpression network analysis (WGCNA) was performed to obtain the core gene modules. Least absolute shrinkage and selection operator (LASSO) regression was applied to identify key genes. ROC curves were employed to explore their diagnostic accuracy. Transcription factor prediction of the key biomarkers was performed using the Cytoscape plugin IRegulon. The analysis of the infiltration of 28 immune cells and their correlation with the key biomarkers were performed. RESULTS A total of 1474 DEGs were identified. Their functions were mostly related to immune-related diseases and signaling pathways. MCODE identified five modules. The turquoise module of WGCNA had significant relevance to the glomerulus in FSGS. TGFB1 and NOTCH1 were identified as potential key glomerular biomarkers in FSGS. Eighteen transcription factors were obtained from the two hub genes. Immune infiltration showed significant correlations with T cells. The results of immune cell infiltration and their relationship with key biomarkers implied that NOTCH1 and TGFB1 were enhanced in immune-related pathways. CONCLUSION TGFB1 and NOTCH1 may be strongly correlated with the pathogenesis of the glomerulus in FSGS and are new candidate key biomarkers. T-cell infiltration plays an essential role in the FSGS lesion process.
Collapse
Affiliation(s)
- Yun Xia Zhang
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Juan Lv
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jun Yuan Bai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - XiaoWei Pu
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - En Lai Dai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
2
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
3
|
Evans DR, Qiao Y, Trost B, Calli K, Martell S, Jones SJM, Scherer SW, Lewis MES. Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous POLR2A Variant. Genes (Basel) 2022; 13:genes13030470. [PMID: 35328024 PMCID: PMC8955435 DOI: 10.3390/genes13030470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) describes a complex and heterogenous group of neurodevelopmental disorders. Whole genome sequencing continues to shed light on the multifactorial etiology of ASD. Dysregulated transcriptional pathways have been implicated in neurodevelopmental disorders. Emerging evidence suggests that de novo POLR2A variants cause a newly described phenotype called ‘Neurodevelopmental Disorder with Hypotonia and Variable Intellectual and Behavioral Abnormalities’ (NEDHIB). The variable phenotype manifests with a spectrum of features; primarily early onset hypotonia and delay in developmental milestones. In this study, we investigate a patient with complex ASD involving epilepsy and strabismus. Whole genome sequencing of the proband−parent trio uncovered a novel de novo POLR2A variant (c.1367T>C, p. Val456Ala) in the proband. The variant appears deleterious according to in silico tools. We describe the phenotype in our patient, who is now 31 years old, draw connections between the previously reported phenotypes and further delineate this emerging neurodevelopmental phenotype. This study sheds new insights into this neurodevelopmental disorder, and more broadly, the genetic etiology of ASD.
Collapse
Affiliation(s)
- Daniel R. Evans
- Department of Family Practice, University of British Columbia (UBC), Victoria, BC V8R 1J8, Canada;
| | - Ying Qiao
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
| | - Brett Trost
- The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (B.T.); (S.W.S.)
| | - Kristina Calli
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
| | - Sally Martell
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
| | - Steven J. M. Jones
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
- Michael Smith Genome Sciences Centre, Vancouver, BC V6H 3N1, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (B.T.); (S.W.S.)
| | - M. E. Suzanne Lewis
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
- Correspondence:
| |
Collapse
|
4
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
5
|
Davis RB, Kaur T, Moosa MM, Banerjee PR. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci 2021; 30:1454-1466. [PMID: 34018649 PMCID: PMC8197437 DOI: 10.1002/pro.4127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Fusion transcription factors generated by genomic translocations are common drivers of several types of cancers including sarcomas and leukemias. Oncofusions of the FET (FUS, EWSR1, and TAF15) family proteins result from the fusion of the prion-like domain (PLD) of FET proteins to the DNA-binding domain (DBD) of certain transcription regulators and are implicated in aberrant transcriptional programs through interactions with chromatin remodelers. Here, we show that FUS-DDIT3, a FET oncofusion protein, undergoes PLD-mediated phase separation into liquid-like condensates. Nuclear FUS-DDIT3 condensates can recruit essential components of the global transcriptional machinery such as the chromatin remodeler SWI/SNF. The recruitment of mammalian SWI/SNF (mSWI/SNF) is driven by heterotypic PLD-PLD interactions between FUS-DDIT3 and core subunits of SWI/SNF, such as the catalytic component BRG1. Further experiments with single-molecule correlative force-fluorescence microscopy support a model wherein the fusion protein forms condensates on DNA surface and enrich BRG1 to activate transcription by ectopic chromatin remodeling. Similar PLD-driven co-condensation of mSWI/SNF with transcription factors can be employed by other oncogenic fusion proteins with a generic PLD-DBD domain architecture for global transcriptional reprogramming.
Collapse
Affiliation(s)
- Richoo B. Davis
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | - Taranpreet Kaur
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | | | | |
Collapse
|