1
|
Chen YY, Sullivan J, Hanley S, Price J, Tariq MA, McIlvenna LC, Whitham M, Sharma-Oates A, Harrison P, Lord JM, Hazeldine J. Impact of Senescent Cell-Derived Extracellular Vesicles on Innate Immune Cell Function. Adv Biol (Weinh) 2024:e2400265. [PMID: 39441562 DOI: 10.1002/adbi.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are components of the senescence-associated secretory phenotype (SASP) that influence cellular functions via their cargo. Here, the interaction between EVs derived from senescent (SEVs) and non-senescent (N-SEVs) fibroblasts and the immune system is investigated. Via endocytosis, SEVs are phagocytosed by monocytes, neutrophils, and B cells. Studies with the monocytic THP-1 cell line find that pretreatment with SEVs results in a 32% (p < 0.0001) and 66% (p < 0.0001) increase in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production when compared to vehicle control or N-SEVs respectively. Interestingly, relative to vehicle control, THP-1 cells exposed to N-SEVs exhibit a 20% decrease in TNF-α secretion (p < 0.05). RNA sequencing reveals significant differences in gene expression in THP-1 cells treated with SEVs or N-SEVs, with vesicle-mediated transport and cell cycle regulation pathways featuring predominantly with N-SEV treatment, while pathways relating to SLITS/ROBO signaling, cell metabolism, and cell cycle regulation are enriched in THP-1 cells treated with SEVs. Proteomic analysis also reveals significant differences between SEV and N-SEV cargo. These results demonstrate that phagocytes and B cells uptake SEVs and drive monocytes toward a more proinflammatory phenotype upon LPS stimulation. SEVs may therefore contribute to the more proinflammatory immune response seen with aging.
Collapse
Affiliation(s)
- Yung-Yi Chen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jack Sullivan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| | - Shaun Hanley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad A Tariq
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke C McIlvenna
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, B15 2TH, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| |
Collapse
|
2
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Espejo C, Ezenwa VO. Extracellular vesicles: an emerging tool for wild immunology. DISCOVERY IMMUNOLOGY 2024; 3:kyae011. [PMID: 39005930 PMCID: PMC11244269 DOI: 10.1093/discim/kyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024]
Abstract
The immune system is crucial for defending organisms against pathogens and maintaining health. Traditionally, research in immunology has relied on laboratory animals to understand how the immune system works. However, there is increasing recognition that wild animals, due to their greater genetic diversity, lifespan, and environmental exposures, have much to contribute to basic and translational immunology. Unfortunately, logistical challenges associated with collecting and storing samples from wildlife, and the lack of commercially available species-specific reagents have hindered the advancement of immunological research on wild species. Extracellular vesicles (EVs) are cell-derived nanoparticles present in all body fluids and tissues of organisms spanning from bacteria to mammals. Human and lab animal studies indicate that EVs are involved in a range of immunological processes, and recent work shows that EVs may play similar roles in diverse wildlife species. Thus, EVs can expand the toolbox available for wild immunology research, helping to overcome some of the challenges associated with this work. In this paper, we explore the potential application of EVs to wild immunology. First, we review current understanding of EV biology across diverse organisms. Next, we discuss key insights into the immune system gained from research on EVs in human and laboratory animal models and highlight emerging evidence from wild species. Finally, we identify research themes in wild immunology that can immediately benefit from the study of EVs and describe practical considerations for using EVs in wildlife research.
Collapse
Affiliation(s)
- Camila Espejo
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Vanessa O Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Poh QH, Rai A, Pangestu M, Salamonsen LA, Greening DW. Rapid generation of functional nanovesicles from human trophectodermal cells for embryo attachment and outgrowth. Proteomics 2024; 24:e2300056. [PMID: 37698557 DOI: 10.1002/pmic.202300056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mulyoto Pangestu
- Education Program in Reproduction and Development (EPRD), Department of Obstetrics and Gynaecology, Monash Clinical School, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Wu L, van Heugten MH, van den Bosch TPP, Duimel H, López-Iglesias C, Hesselink DA, Baan CC, Boer K. Polarized HLA Class I Expression on Renal Tubules Hinders the Detection of Donor-Specific Urinary Extracellular Vesicles. Int J Nanomedicine 2024; 19:3497-3511. [PMID: 38628433 PMCID: PMC11020244 DOI: 10.2147/ijn.s446525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Kidney transplantation is the optimal treatment for patients with end-stage kidney disease. Donor-specific urinary extracellular vesicles (uEVs) hold potential as biomarkers for assessing allograft status. We aimed to develop a method for identifying donor-specific uEVs based on human leukocyte antigen (HLA) mismatching with the kidney transplant recipients (KTRs). Patients and Methods Urine and plasma were obtained from HLA-A2+ donors and HLA-A2- KTRs pre-transplant. CD9 (tetraspanin, EV marker) and HLA-A2 double-positive (CD9+ HLA-A2+) EVs were quantified using isolation-free imaging flow cytometry (IFCM). Healthy individuals' urine was used to investigate CD9+ HLA-class-I+ uEV quantification using IFCM, time-resolved fluoroimmunoassay (TR-FIA), and immunogold staining cryo-electron microscopy (cryo-EM). Culture-derived CD9+ HLA-class-I+ EVs were spiked into the urine to investigate urine matrix effects on uEV HLA detection. Deceased donor kidneys and peritumoral kidney tissue were used for HLA class I detection with histochemistry. Results The concentrations of CD9+ HLA-A2+ EVs in both donor and recipient urine approached the negative (detergent-treated) control levels for IFCM and were significantly lower than those observed in donor plasma. In parallel, universal HLA class I+ uEVs were similarly undetectable in the urine and uEV isolates compared with plasma, as verified by IFCM, TR-FIA, and cryogenic electron microscopy. Culture supernatant containing HLA class I+ vesicles from B, T, and human proximal tubule cells were spiked into the urine, and these EVs remained stable at 37°C for 8 hours. Immunohistochemistry revealed that HLA class I was predominantly expressed on the basolateral side of renal tubules, with limited expression on their urine/apical side. Conclusion The detection of donor-specific uEVs is hindered by the limited release of HLA class I+ EVs from the kidney into the urine, primarily due to the polarized HLA class I expression on renal tubules. Identifying donor-specific uEVs requires further advancements in recognizing transplant-specific uEVs and urine-associated markers.
Collapse
Affiliation(s)
- Liang Wu
- Department of Nephrology, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, People’s Republic of China
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Martijn H van Heugten
- University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | | | - Hans Duimel
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Karin Boer
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
7
|
Carré A, Zhou Z, Perez-Hernandez J, Samassa F, Lekka C, Manganaro A, Oshima M, Liao H, Parker R, Nicastri A, Brandao B, Colli ML, Eizirik DL, Göransson M, Morales OB, Anderson A, Landry L, Kobaisi F, Scharfmann R, Marselli L, Marchetti P, You S, Nakayama M, Hadrup SR, Kent SC, Richardson SJ, Ternette N, Mallone R. Interferon-α promotes neo-antigen formation and preferential HLA-B-restricted antigen presentation in pancreatic β-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557918. [PMID: 37745505 PMCID: PMC10516036 DOI: 10.1101/2023.09.15.557918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but its effect on the repertoire of HLA Class I (HLA-I)-bound peptides presented by pancreatic β-cells is unknown. Using immunopeptidomics, we characterized the peptide/HLA-I presentation in in-vitro resting and IFN-α-exposed β-cells. IFN-α increased HLA-I expression and peptide presentation, including neo-sequences derived from alternative mRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-splicing. This antigenic landscape relied on processing by both the constitutive and immune proteasome. The resting β-cell immunopeptidome was dominated by HLA-A-restricted ligands. However, IFN-α only marginally upregulated HLA-A and largely favored HLA-B, translating into a major increase in HLA-B-restricted peptides and into an increased activation of HLA-B-restricted vs. HLA-A-restricted CD8+ T-cells. A preferential HLA-B hyper-expression was also observed in the islets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8+ T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D pathogenesis.
Collapse
Affiliation(s)
- Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Javier Perez-Hernandez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Department of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | | | - Christiana Lekka
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Anthony Manganaro
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Hanqing Liao
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Annalisa Nicastri
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L. Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Marcus Göransson
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Amanda Anderson
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laurie Landry
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Farah Kobaisi
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sine R. Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah J. Richardson
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
8
|
Wang F, Veth T, Kuipers M, Altelaar M, Stecker KE. Optimized Suspension Trapping Method for Phosphoproteomics Sample Preparation. Anal Chem 2023; 95:9471-9479. [PMID: 37319171 PMCID: PMC10308333 DOI: 10.1021/acs.analchem.3c00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
A successful mass spectrometry-based phosphoproteomics analysis relies on effective sample preparation strategies. Suspension trapping (S-Trap) is a novel, rapid, and universal method of sample preparation that is increasingly applied in bottom-up proteomics studies. However, the performance of the S-Trap protocol for phosphoproteomics studies is unclear. In the existing S-Trap protocol, the addition of phosphoric acid (PA) and methanol buffer creates a fine protein suspension to capture proteins on a filter and is a critical step for subsequent protein digestion. Herein, we demonstrate that this addition of PA is detrimental to downstream phosphopeptide enrichment, rendering the standard S-Trap protocol suboptimal for phosphoproteomics. In this study, the performance of the S-Trap digestion for proteomics and phosphoproteomics is systematically evaluated in large-scale and small-scale samples. The results of this comparative analysis show that an optimized S-Trap approach, where trifluoroacetic acid is substituted for PA, is a simple and effective method to prepare samples for phosphoproteomics. Our optimized S-Trap protocol is applied to extracellular vesicles to demonstrate superior sample preparation workflow for low-abundance, membrane-rich samples.
Collapse
Affiliation(s)
- Fujia Wang
- Biomolecular
Mass Spectrometry and Proteomics, Center for Biomolecular Research
and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Tim Veth
- Biomolecular
Mass Spectrometry and Proteomics, Center for Biomolecular Research
and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Marije Kuipers
- Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584
CM Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics, Center for Biomolecular Research
and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Kelly E. Stecker
- Biomolecular
Mass Spectrometry and Proteomics, Center for Biomolecular Research
and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
9
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
10
|
Bauzá-Martinez J, Armony G, Pronker MF, Wu W. Characterization of protein complexes in extracellular vesicles by intact extracellular vesicle crosslinking mass spectrometry (iEVXL). J Extracell Vesicles 2022; 11:e12245. [PMID: 35918900 PMCID: PMC9346492 DOI: 10.1002/jev2.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs) are blood‐borne messengers that coordinate signalling between different tissues and organs in the body. The specificity of such crosstalk is determined by preferential EV docking to target sites, as mediated through protein‐protein interactions. As such, the need to structurally characterize the EV surface precedes further understanding of docking selectivity and recipient‐cell uptake mechanisms. Here, we describe an intact extracellular vesicle crosslinking mass spectrometry (iEVXL) method that can be applied for structural characterization of protein complexes in EVs. By using a partially membrane‐permeable disuccinimidyl suberate crosslinker, proteins on the EV outer‐surface and inside EVs can be immobilized together with their interacting partners. This not only provides covalent stabilization of protein complexes before extraction from the membrane‐enclosed environment, but also generates a set of crosslinking distance restraints that can be used for structural modelling and comparative screening of changes in EV protein assemblies. Here we demonstrate iEVXL as a powerful approach to reveal high‐resolution information, about protein determinants that govern EV docking and signalling, and as a crucial aid in modelling docking interactions.
Collapse
Affiliation(s)
- Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gad Armony
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Nielsen M, Ternette N, Barra C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert Rev Proteomics 2022; 19:77-88. [PMID: 35390265 DOI: 10.1080/14789450.2022.2064278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The comprehensive collection of peptides presented by Major Histocompatibility Complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell based therapeutics and vaccines. These applications are however challenged by the complex nature of immunopeptidome data. AREAS COVERED Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION Further we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large scale immunopeptidomics data.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Carolina Barra
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
12
|
Kumar P, Boyne C, Brown S, Qureshi A, Thorpe P, Synowsky SA, Shirran S, Powis SJ. Tumour-associated antigenic peptides are present in the HLA class I ligandome of cancer cell line derived extracellular vesicles. Immunology 2022; 166:249-264. [PMID: 35318648 DOI: 10.1111/imm.13471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The recent success of monoclonal antibody checkpoint inhibitor therapies that enhance the ability of CD8+ T cells to detect cancer-related antigenic peptides has refocused the need to fully understand the repertoire of peptides being presented to the immune system. Whilst the peptide ligandome presented by cell surface human leucocyte antigen class I (HLA-I) molecules on cancer cells has been studied extensively, the ligandome of extracellular vesicles (EVs) remains poorly defined. Here, we report the HLA-I ligandome of both the cell surface and EVs from eight breast cancer cell lines (MCF7, MDA-MB-231, MDA-MB-361, MDA-MB-415, MDA-MB-453, HCC 1806, HCC 1395, and HCC 1954), and additionally the melanoma cell line ESTDAB-056 and the multiple myeloma line RPMI 8226. Utilizing HLA-I immunoisolation and mass spectrometry, we detected a total of 6574 peptides from the cell surface and 2461 peptides from the EVs of the cell lines studied. Within the EV HLA-I ligandome, we identified 150 peptides derived from tumour associated antigenic proteins, of which 19 peptides have been shown to elicit T-cell responses in previous studies. Our data thus show the prevalence of clinically relevant tumour-associated antigenic peptides in the HLA-I ligandome presented on EV.
Collapse
Affiliation(s)
- Pankaj Kumar
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Caitlin Boyne
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Sydney Brown
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Ayesha Qureshi
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Peter Thorpe
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Silvia A Synowsky
- School of Biology, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Sally Shirran
- School of Biology, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Simon J Powis
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
13
|
Mukherjee S, Sanchez-Bernabeu A, Demmers LC, Wu W, Heck AJR. The HLA Ligandome Comprises a Limited Repertoire of O-GlcNAcylated Antigens Preferentially Associated With HLA-B*07:02. Front Immunol 2021; 12:796584. [PMID: 34925382 PMCID: PMC8671986 DOI: 10.3389/fimmu.2021.796584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Mass-spectrometry based immunopeptidomics has provided unprecedented insights into antigen presentation, not only charting an enormous ligandome of self-antigens, but also cancer neoantigens and peptide antigens harbouring post-translational modifications. Here we concentrate on the latter, focusing on the small subset of HLA Class I peptides (less than 1%) that has been observed to be post-translationally modified (PTM) by a O-linked N-acetylglucosamine (GlcNAc). Just like neoantigens these modified antigens may have specific immunomodulatory functions. Here we compiled from literature, and a new dataset originating from the JY B cell lymphoblastoid cell line, a concise albeit comprehensive list of O-GlcNAcylated HLA class I peptides. This cumulative list of O-GlcNAcylated HLA peptides were derived from normal and cancerous origin, as well as tissue specimen. Remarkably, the overlap in detected O-GlcNAcylated HLA peptides as well as their source proteins is strikingly high. Most of the O-GlcNAcylated HLA peptides originate from nuclear proteins, notably transcription factors. From this list, we extract that O-GlcNAcylated HLA Class I peptides are preferentially presented by the HLA-B*07:02 allele. This allele loads peptides with a Proline residue anchor at position 2, and features a binding groove that can accommodate well the recently proposed consensus sequence for O-GlcNAcylation, P(V/A/T/S)g(S/T), essentially explaining why HLA-B*07:02 is a favoured binding allele. The observations drawn from the compiled list, may assist in the prediction of novel O-GlcNAcylated HLA antigens, which will be best presented by patients harbouring HLA-B*07:02 or related alleles that use Proline as anchoring residue.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Alvaro Sanchez-Bernabeu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Laura C Demmers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| |
Collapse
|