1
|
Nishikino T, Sugimoto T, Kandori H. Low-temperature FTIR spectroscopy of the L/Q switch of proteorhodopsin. Phys Chem Chem Phys 2024; 26:22959-22967. [PMID: 39171479 DOI: 10.1039/d4cp02248c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Rhodopsins are photoreceptive membrane proteins containing a retinal chromophore, and the color tuning mechanism in rhodopsins is one of the important topics. Color switch is a color-determining residue at the same position, where replacement of red- and blue-shifting amino acids in two wild-type rhodopsins causes spectral blue- and red-shifts, respectively. The first and most famous color switch in microbial rhodopsins is the L/Q switch in proteorhodopsins (PRs). Green- or blue-absorbing PR (GPR or BPR) contains Leu and Gln at position 105 of the C-helix (TM3), respectively, and their replacement converted absorbing colors. The L/Q switch enables bacteria to absorb green or blue light in shallow or deep ocean waters, respectively. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, a comprehensive mutation study of position 105 in GPR revealed that the λmax correlated with the volume of residues, not the hydropathy index. To gain structural insights into the mechanism, we applied low-temperature FTIR spectroscopy of L105Q GPR, and the obtained spectra were compared with those of GPR and BPR. The difference FTIR spectra of L105Q GPR were similar to those of BPR, not GPR, implying that the L/Q switch converts the GPR structure into a BPR structure in terms of the local environments of the retinal chromophore. It includes retinal skeletal vibration, hydrogen-bonding strength of the protonated Schiff base, amide-A vibration (peptide backbone), and protein-bound water molecules. Consequently color is switched accompanying such structural alterations, and known as the L/Q switch.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Wijayaratna D, Sacchetta F, Pedraza-González L, Fanelli F, Sugihara T, Koyanagi M, Piyawardana S, Ghotra K, Thotamune W, Terakita A, Olivucci M, Karunarathne A. In-silico predicted mouse melanopsins with blue spectral shifts deliver efficient subcellular signaling. Cell Commun Signal 2024; 22:394. [PMID: 39118111 PMCID: PMC11312219 DOI: 10.1186/s12964-024-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Melanopsin is a photopigment belonging to the G Protein-Coupled Receptor (GPCR) family expressed in a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) and responsible for a variety of processes. The bistability and, thus, the possibility to function under low retinal availability would make melanopsin a powerful optogenetic tool. Here, we aim to utilize mouse melanopsin to trigger macrophage migration by its subcellular optical activation with localized blue light, while simultaneously imaging the migration with red light. To reduce melanopsin's red light sensitivity, we employ a combination of in silico structure prediction and automated quantum mechanics/molecular mechanics modeling to predict minimally invasive mutations to shift its absorption spectrum towards the shorter wavelength region of the visible spectrum without compromising the signaling efficiency. The results demonstrate that it is possible to achieve melanopsin mutants that resist red light-induced activation but are activated by blue light and display properties indicating preserved bistability. Using the A333T mutant, we show that the blue light-induced subcellular melanopsin activation triggers localized PIP3 generation and macrophage migration, which we imaged using red light, demonstrating the optogenetic utility of minimally engineered melanopsins.
Collapse
Affiliation(s)
| | - Filippo Sacchetta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Francesca Fanelli
- Department of Life Sciences, Dulbecco Telethon Institute, University of Modena and Reggio Emilia, Modena, I-41125, Italy
| | - Tomohiro Sugihara
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Mitsumasa Koyanagi
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Senuri Piyawardana
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Kiran Ghotra
- Department of Biology, Siena Heights University, Adrian, MI, 49221, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Akihisa Terakita
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA.
| |
Collapse
|
3
|
Palombo R, Barneschi L, Pedraza-González L, Yang X, Olivucci M. Picosecond quantum-classical dynamics reveals that the coexistence of light-induced microbial and animal chromophore rotary motion modulates the isomerization quantum yield of heliorhodopsin. Phys Chem Chem Phys 2024; 26:10343-10356. [PMID: 38501246 DOI: 10.1039/d4cp00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Rhodopsins are light-responsive proteins forming two vast and evolutionary distinct superfamilies whose functions are invariably triggered by the photoisomerization of a single retinal chromophore. In 2018 a third widespread superfamily of rhodopsins called heliorhodopsins was discovered using functional metagenomics. Heliorhodopsins, with their markedly different structural features with respect to the animal and microbial superfamilies, offer an opportunity to study how evolution has manipulated the chromophore photoisomerization to achieve adaptation. One question is related to the mechanism of such a reaction and how it differs from that of animal and microbial rhodopsins. To address this question, we use hundreds of quantum-classical trajectories to simulate the spectroscopically documented picosecond light-induced dynamics of a heliorhodopsin from the archaea thermoplasmatales archaeon (TaHeR). We show that, consistently with the observations, the trajectories reveal two excited state decay channels. However, inconsistently with previous hypotheses, only one channel is associated with the -C13C14- rotation of microbial rhodopsins while the second channel is characterized by the -C11C12- rotation typical of animal rhodopsins. The fact that such -C11C12- rotation is aborted upon decay and ground state relaxation, explains why illumination of TaHeR only produces the 13-cis isomer with a low quantum efficiency. We argue that the documented lack of regioselectivity in double-bond excited state twisting motion is the result of an "adaptation" that could be completely lost via specific residue substitutions modulating the steric hindrance experienced along the isomerization motion.
Collapse
Affiliation(s)
- Riccardo Palombo
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
| | - Laura Pedraza-González
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy
| | - Xuchun Yang
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
4
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Otomo A, Mizuno M, Inoue K, Kandori H, Mizutani Y. Protein dynamics of a light-driven Na + pump rhodopsin probed using a tryptophan residue near the retinal chromophore. Biophys Physicobiol 2023; 20:e201016. [PMID: 38362331 PMCID: PMC10865881 DOI: 10.2142/biophysico.bppb-v20.s016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 02/17/2024] Open
Abstract
Direct observation of protein structural changes during ion transport in ion pumps provides valuable insights into the mechanism of ion transport. In this study, we examined structural changes in the light-driven sodium ion (Na+) pump rhodopsin KR2 on the sub-millisecond time scale, corresponding with the uptake and release of Na+. We compared the ion-pumping activities and transient absorption spectra of WT and the W215F mutant, in which the Trp215 residue located near the retinal chromophore on the cytoplasmic side was replaced with a Phe residue. Our findings indicated that atomic contacts between the bulky side chain of Trp215 and the C20 methyl group of the retinal chromophore promote relaxation of the retinal chromophore from the 13-cis to the all-trans form. Since Trp215 is conserved in other ion-pumping rhodopsins, the present results suggest that this residue commonly acts as a mechanical transducer. In addition, we measured time-resolved ultraviolet resonance Raman (UVRR) spectra to show that the environment around Trp215 becomes less hydrophobic at 1 ms after photoirradiation and recovers to the unphotolyzed state with a time constant of around 10 ms. These time scales correspond to Na+ uptake and release, suggesting evolution of a transient ion channel at the cytoplasmic side for Na+ uptake, consistent with the alternating-access model of ion pumps. The time-resolved UVRR technique has potential for application to other ion-pumping rhodopsins and could provide further insights into the mechanism of ion transport.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Present address: Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Science, Okazaki, Aichi 444-8787, Japan
- Present address: Department of Functional Molecular Science, School of Physical Science, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Chemistry, Graduate School of Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Pedraza-González L, Barneschi L, Marszałek M, Padula D, De Vico L, Olivucci M. Automated QM/MM Screening of Rhodopsin Variants with Enhanced Fluorescence. J Chem Theory Comput 2023; 19:293-310. [PMID: 36516450 DOI: 10.1021/acs.jctc.2c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a computational protocol for the fast and automated screening of excited-state hybrid quantum mechanics/molecular mechanics (QM/MM) models of rhodopsins to be used as fluorescent probes based on the automatic rhodopsin modeling protocol (a-ARM). Such "a-ARM fluorescence screening protocol" is implemented through a general Python-based driver, PyARM, that is also proposed here. The implementation and performance of the protocol are benchmarked using different sets of rhodopsin variants whose absorption and, more relevantly, emission spectra have been experimentally measured. We show that, despite important limitations that make unsafe to use it as a black-box tool, the protocol reproduces the observed trends in fluorescence and it is capable of selecting novel potentially fluorescent rhodopsins. We also show that the protocol can be used in mechanistic investigations to discern fluorescence enhancement effects associated with a near degeneracy of the S1/S2 states or, alternatively, with a barrier generated via coupling of the S0/S1 wave functions.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Leonardo Barneschi
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Michał Marszałek
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiaǹskiego 27, 50-370 Wrocław, Poland
| | - Daniele Padula
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
7
|
Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin. Nat Commun 2022; 13:6652. [PMID: 36333283 PMCID: PMC9636224 DOI: 10.1038/s41467-022-33953-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The understanding of how the rhodopsin sequence can be modified to exactly modulate the spectroscopic properties of its retinal chromophore, is a prerequisite for the rational design of more effective optogenetic tools. One key problem is that of establishing the rules to be satisfied for achieving highly fluorescent rhodopsins with a near infrared absorption. In the present paper we use multi-configurational quantum chemistry to construct a computer model of a recently discovered natural rhodopsin, Neorhodopsin, displaying exactly such properties. We show that the model, that successfully replicates the relevant experimental observables, unveils a geometrical and electronic structure of the chromophore featuring a highly diffuse charge distribution along its conjugated chain. The same model reveals that a charge confinement process occurring along the chromophore excited state isomerization coordinate, is the primary cause of the observed fluorescence enhancement.
Collapse
|
8
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
9
|
Absorption wavelength along chromophore low-barrier hydrogen bonds. iScience 2022; 25:104247. [PMID: 35521532 PMCID: PMC9062252 DOI: 10.1016/j.isci.2022.104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
In low-barrier hydrogen bonds (H-bonds), the pKa values for the H-bond donor and acceptor moieties are nearly equal, whereas the redox potential values depend on the H+ position. Spectroscopic details of low-barrier H-bonds remain unclear. Here, we report the absorption wavelength along low-barrier H-bonds in protein environments, using a quantum mechanical/molecular mechanical approach. Low-barrier H-bonds form between Glu46 and p-coumaric acid (pCA) in the intermediate pRCW state of photoactive yellow protein and between Asp116 and the retinal Schiff base in the intermediate M-state of the sodium-pumping rhodopsin KR2. The H+ displacement of only ∼0.4 Å, which does not easily occur without low-barrier H-bonds, is responsible for the ∼50 nm-shift in the absorption wavelength. This may be a basis of how photoreceptor proteins have evolved to proceed photocycles using abundant protons. The low-barrier H-bond formation is a prerequisite for proton transfer How the absorption wavelength changes as H+ moves is an open question The H+ displacement of ∼0.4 Å leads to the absorption wavelength shift of ∼50 nm The localization of the molecular orbitals plays a key role in the wavelength shift
Collapse
|
10
|
Pedraza-González L, Barneschi L, Padula D, De Vico L, Olivucci M. Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol. Top Curr Chem (Cham) 2022; 380:21. [PMID: 35291019 PMCID: PMC8924150 DOI: 10.1007/s41061-022-00374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 10/27/2022]
Abstract
In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|