1
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wu S, Tang R, Ohlstein B, Guo Z. A live-imaging protocol for tracking intestinal stem cell divisions in the Drosophila melanogaster pupal midgut. STAR Protoc 2023; 4:102749. [PMID: 38041821 PMCID: PMC10701448 DOI: 10.1016/j.xpro.2023.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
Establishing a long-term ex vivo observation of the intestinal stem cell (ISC) is crucial to help understand the formation and homeostasis of the intestinal epithelium. Here, we present a protocol for tracking the division of Drosophila pupal ISCs during pupal midgut development. We describe steps for dissecting, mounting, and live imaging the pupal midgut. We then detail procedures for fluorescence quantification of each cell. This protocol can be applied to other fluorescently tagged proteins. For complete details on the use and execution of this protocol, please refer to Wu et al.1.
Collapse
Affiliation(s)
- Song Wu
- Department of Pharmacology, Bioengineering and Food College, Hubei University of Technology, Wuhan 430068, China; Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ruizhi Tang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Wu S, Yang Y, Tang R, Zhang S, Qin P, Lin R, Rafel N, Lucchetta EM, Ohlstein B, Guo Z. Apical-basal polarity precisely determines intestinal stem cell number by regulating Prospero threshold. Cell Rep 2023; 42:112093. [PMID: 36773292 DOI: 10.1016/j.celrep.2023.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Apical-basal polarity and cell-fate determinants are crucial for the cell fate and control of stem cell numbers. However, their interplay leading to a precise stem cell number remains unclear. Drosophila pupal intestinal stem cells (pISCs) asymmetrically divide, generating one apical ISC progenitor and one basal Prospero (Pros)+ enteroendocrine mother cell (EMC), followed by symmetric divisions of each daughter before adulthood, providing an ideal system to investigate the outcomes of polarity loss. Using lineage tracing and ex vivo live imaging, we identify an interlocked polarity regulation network precisely determining ISC number: Bazooka inhibits Pros accumulation by activating Notch signaling to maintain stem cell fate in pISC apical daughters. A threshold of Pros promotes differentiation to EMCs and avoids ISC-like cell fate, and over-threshold of Pros inhibits miranda expression to ensure symmetric divisions in pISC basal daughters. Our work suggests that a polarity-dependent threshold of a differentiation factor precisely controls stem cell number.
Collapse
Affiliation(s)
- Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruizhi Tang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peizhong Qin
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Neus Rafel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Elena M Lucchetta
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin Ohlstein
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Mukherjee S, Calvi BR, Hundley HA, Sokol NS. MicroRNA mediated regulation of the onset of enteroblast differentiation in the Drosophila adult intestine. Cell Rep 2022; 41:111495. [DOI: 10.1016/j.celrep.2022.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022] Open
|
5
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
6
|
Yang D, Ortinau L, Jeong Y, Park D. Advances and challenges in intravital imaging of craniofacial and dental progenitor cells. Genesis 2022; 60:e23498. [PMID: 35980285 PMCID: PMC10015615 DOI: 10.1002/dvg.23498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Craniofacial and appendicular bone homeostasis is dynamically regulated by a balance between bone formation and resorption by osteoblasts and osteoclasts, respectively. Despite the developments in multiple imaging techniques in bone biology, there are still technical challenges and limitations in the investigation of spatial/anatomical location of rare stem/progenitor cells and their molecular regulation in tooth and craniofacial bones of living animals. Recent advances in live animal imaging techniques for the craniofacial and dental apparatus can provide new insights in real time into bone stem/progenitor cell dynamics and function in vivo. Here, we review the current inventions and applications of the noninvasive intravital imaging technique and its practical uses and limitations in the analysis of stem/progenitor cells in craniofacial and dental apparatus in vivo. Furthermore, we also explore the potential applications of intravital microscopy in the dental field.
Collapse
Affiliation(s)
- Dongwook Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Laura Ortinau
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Youngjae Jeong
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Neuron-derived neuropeptide Y fine-tunes the splenic immune responses. Neuron 2022; 110:1327-1339.e6. [PMID: 35139365 DOI: 10.1016/j.neuron.2022.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The nervous and immune systems are closely entwined to maintain the immune balance in health and disease. Here, we showed that LPS can activate suprarenal and celiac ganglia (SrG-CG) neurons and upregulate NPY expression in rats. Single-cell sequencing analysis revealed that knockdown of the NPY gene in SrG-CG altered the proliferation and activation of splenic lymphocytes. In a neuron and splenocyte coculture system and in vivo experiments, neuronal NPY in SrG-CG attenuated the splenic immune response. Notably, we demonstrated that neuronal NPF in Drosophila exerted a conservative immunomodulatory effect. Moreover, numerous SNPs in NPY and its receptors were significantly associated with human autoimmune diseases, which was further supported by the autoimmune disease patients and mouse model experiments. Together, we demonstrated that NPY is an ancient language for nervous-immune system crosstalk and might be utilized to alleviate inflammatory storms during infection and to modulate immune balance in autoimmune diseases.
Collapse
|