2
|
Cao D, Qin X, Wang W, Zhang Y, Peng S, Gong H, Luo Q, Yang J. Designing a Hybrid Chain Reaction Probe for Multiplex Transcripts Assay with High-Level Imaging. ACS NANO 2024; 18:618-629. [PMID: 38154106 DOI: 10.1021/acsnano.3c08720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The hybrid chain reaction (HCR), an isothermal and enzyme-free amplification strategy, has found extensive use in fluorescent in situ hybridization (FISH) assays. However, the existing HCRs are limited, being time-consuming processes and low-efficiency imaging due to weak signal, significantly restricting their application in transcriptomic assays. To address the limitations, we developed nine orthogonal HCR hairpin-pair (hp) probes in this study to enable efficient signal amplification for multiplex assays. To enhance the efficiency and imaging quality of multiplex assays using these HCR probes, we employed two strategies. First, we coupled fluorescent molecules to HCR hairpins via disulfide bonds, facilitating easy removal through chemical cleavage. As a result, the workflow was greatly simplified. Second, we combined HCR with in situ rolling circle amplification (ISRCA), creating ISRCA-HCR, which achieved a 17-fold signal amplification. ISRCA-HCR demonstrated a high-level imaging capability for spatial cell type assays. This study shows the application for cell typing based on the developed HCR probes, enabling accurate and high-level signal amplification for multiplex FISH imaging. This provides an effective research tool for transcriptome and spatial cell type analysis.
Collapse
Affiliation(s)
- Dongjian Cao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xinxin Qin
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenjing Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Zhang
- Class 202001, School of Engineering Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sunxiang Peng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Jie Yang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Tao Y, Zhou X, Sun L, Lin D, Cai H, Chen X, Zhou W, Yang B, Hu Z, Yu J, Zhang J, Yang X, Yang F, Shen B, Qi W, Fu Z, Dai J, Cao G. Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules. Nat Commun 2023; 14:443. [PMID: 36707540 PMCID: PMC9883232 DOI: 10.1038/s41467-023-36137-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
In the unprecedented single-cell sequencing and spatial multiomics era of biology, fluorescence in situ hybridization (FISH) technologies with higher sensitivity and robustness, especially for detecting short RNAs and other biomolecules, are greatly desired. Here, we develop the robust multiplex π-FISH rainbow method to detect diverse biomolecules (DNA, RNA, proteins, and neurotransmitters) individually or simultaneously with high efficiency. This versatile method is successfully applied to detect gene expression in different species, from microorganisms to plants and animals. Furthermore, we delineate the landscape of diverse neuron subclusters by decoding the spatial distribution of 21 marker genes via only two rounds of hybridization. Significantly, we combine π-FISH rainbow with hybridization chain reaction to develop π-FISH+ technology for short nucleic acid fragments, such as microRNA and prostate cancer anti-androgen therapy-resistant marker ARV7 splicing variant in circulating tumour cells from patients. Our study provides a robust biomolecule in situ detection technology for spatial multiomics investigation and clinical diagnosis.
Collapse
Affiliation(s)
- Yingfeng Tao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiaoliu Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Leqiang Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Huaiyuan Cai
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Yu
- Department of Blood Transfusion, Wuhan hospital of Traditional Chinese and Western Medicine, Huazhong University of Science and Technology, 430070, Wuhan, China
| | - Jing Zhang
- Department of the 1st Thoracic Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430070, Wuhan, China
| | - Xiaoqing Yang
- Hospital of Huazhong Agricultural University, 430070, Wuhan, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China.,Key Laboratory of Preventive Medicine in Hubei Province, 430070, Wuhan, Hubei Province, China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, China.,African Swine Fever Regional Laboratory of China, Guangzhou, China
| | - Zhenfang Fu
- Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China. .,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China. .,College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China. .,College of Biomedicine and Health, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|