1
|
Cagnin S, Pontisso P, Martini A. SerpinB3: A Multifaceted Player in Health and Disease-Review and Future Perspectives. Cancers (Basel) 2024; 16:2579. [PMID: 39061218 PMCID: PMC11274807 DOI: 10.3390/cancers16142579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
SerpinB3, a member of the serine-protease inhibitor family, has emerged as a crucial player in various physiological and pathological processes. Initially identified as an oncogenic factor in squamous cell carcinomas, SerpinB3's intricate involvement extends from fibrosis progression and cancer to cell protection in acute oxidative stress conditions. This review explores the multifaceted roles of SerpinB3, focusing on its implications in fibrosis, metabolic syndrome, carcinogenesis and immune system impairment. Furthermore, its involvement in tissue protection from oxidative stress and wound healing underscores its potential as diagnostic and therapeutic tool. Recent studies have described the therapeutic potential of targeting SerpinB3 through its upstream regulators, offering novel strategies for cancer treatment development. Overall, this review underscores the importance of further research to fully elucidate the mechanisms of action of SerpinB3 and to exploit its therapeutic potential across various medical conditions.
Collapse
Affiliation(s)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35123 Padova, Italy; (S.C.); (A.M.)
| | | |
Collapse
|
2
|
Reginacova K, Pospisilova E, Kubecova M, Svobodova P, Bobek V, Kolostova K. Circulating tumor cells in patients with cervical cancer undergoing chemoradiotherapy combined with brachytherapy. Am J Cancer Res 2024; 14:3614-3625. [PMID: 39113856 PMCID: PMC11301293 DOI: 10.62347/qixj7103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/11/2024] [Indexed: 08/10/2024] Open
Abstract
Circulating tumor cells (CTCs) have significant potential to become an important tool for monitoring the effects of treatment in solid tumors. The present study reports the occurance of CTCs in cervical cancer (CC) patients during radical chemoradiotherapy (CRT), including brachytherapy (BRT), and during the follow-up period. Patients diagnosed with CC treated with radical CRT were included in the study (n=30). A total of 167 CTC-tests (MetaCell®) were provided at predefined testing time points during the study follow-up (e.g., before CRT, after CRT, every three months of follow-up). In parallel with CTC-testing, SCC-Ag were measured to compare their predictive values during treatment. CTCs were present in 96% (25/26) of patients at the time of diagnosis and in 61% (14/23) after treatment. Patients who relapsed during the 36-month follow-up (n=10) showed an elevation in pre-treatment CTC- numbers, similarly there was a significant increase in pre-treatment SCC-Ag. As next, an increased number of CTCs was observed approximately 12 weeks before relapse was diagnosed by standard imaging modalities (MRI, US, PET-CT) in 3 of 4 patients. In addition to standardized vital cytomorphology of enriched CTCs, quantitative PCR (qPCR) was used to inform the nature of CTCs before treatment. Analysis revealed increased SOX2 and POUSF expression in CTCs in the group of patients with recurrence (P < 0.02). Disease aggressiveness may be related to increased expression of stem cell markers, as found in samples from relapsed patients. CTCs may be an aid to assess tumor burden and disease aggressiveness. An increase in CTCs precedes an increase in SCC-Ag and confirmation of relapse by imaging, as shown in our study.
Collapse
Affiliation(s)
- Klaudia Reginacova
- Department of Oncology, The Third Faculty of Medicine, Charles University Prague and Faculty Hospital Kralovske VinohradySrobarova 50, 100 34 Prague 10, Czech Republic
| | - Eliska Pospisilova
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske VinohradySrobarova 50, 100 34 Prague 10, Czech Republic
| | - Martina Kubecova
- Department of Oncology, The Third Faculty of Medicine, Charles University Prague and Faculty Hospital Kralovske VinohradySrobarova 50, 100 34 Prague 10, Czech Republic
| | - Pavla Svobodova
- Department of Gynaecology, Military University Hospital and The Third Faculty of MedicineU Vojenske Nemocnice 1200, 169 02 Prague 6, Czech Republic
| | - Vladimir Bobek
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske VinohradySrobarova 50, 100 34 Prague 10, Czech Republic
- Department of Gynaecology, Military University Hospital and The Third Faculty of MedicineU Vojenske Nemocnice 1200, 169 02 Prague 6, Czech Republic
- Department of Thoracic Surgery, Krajská zdravotní a.s. Hospital41100 Ústí nad Labem, Czech Republic
- 3 Department of Surgery, 1 Faculty of Medicine Charles UniversityV Uvalu 84, 150 06 Prague 5, Czech Republic
- Department of Thoracic Surgery, Lower Silesian Oncology, Pulmonology and Hematology Center and Technical University WroclawPlac Ludwika Hirszfelda 12, 534 13 Wrocław, Poland
| | - Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske VinohradySrobarova 50, 100 34 Prague 10, Czech Republic
- Department of Gynaecology, Military University Hospital and The Third Faculty of MedicineU Vojenske Nemocnice 1200, 169 02 Prague 6, Czech Republic
| |
Collapse
|
3
|
Shi V, Grover S, Huang Y, Thaker PH, Kuroki LM, Powell MA, Mutch DG, Contreras JA, Schwarz JK, Grigsby PW, Markovina S. Accuracy of surveillance serum squamous cell carcinoma antigen for cervical cancer recurrence after definitive chemoradiation. Int J Gynecol Cancer 2024; 34:808-816. [PMID: 38684343 DOI: 10.1136/ijgc-2024-005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE Recurrence remains a significant clinical problem for patients with cervical cancer, and early detection may improve outcomes. Serum squamous cell carcinoma antigen (SCCA) is a biomarker of prognosis and response to chemoradiotherapy. We hypothesized that elevated serum SCCA during surveillance is sensitive and specific for recurrence. METHODS Pre-treatment and follow-up serum SCCA from patients treated with definitive-intent radiotherapy were measured via enzyme-linked immunosorbent assay in a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory and analyzed retrospectively. Follow-up SCCA was defined as the value closest to recurrence, or as last available for patients without recurrence. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of follow-up SCCA for recurrence was determined for the whole cohort (Cohort 1), for patients with elevated (Cohort 2), and normal pre-treatment SCCA (Cohort 3). Patterns of failure were also evaluated. RESULTS Of 227 patients in Cohort 1, 23% experienced recurrence, and 17% died of cervical cancer. Mean follow-up SCCA was 0.9 (±2.5) for patients with no recurrence and 6.0 (±18.7) for patients with recurrence (p=0.02). Sensitivity, specificity, PPV, and NPV of follow-up SCCA for recurrence in Cohort 1 were 38.5%, 97.1%, 80%, and 84.2%, and for patients in Cohort 2 were 54.5%, 95%, 78.3%, and 86.5%, respectively. Four of 86 patients in Cohort 3 had an elevated follow-up SCCA, two of these at the time of recurrence. Elevated pre-treatment SCCA and follow-up SCCA were associated with isolated pelvic recurrence. CONCLUSIONS Surveillance serum SCCA has high specificity and NPV for recurrence, and may be of limited utility in patients with normal pre-treatment SCCA.
Collapse
Affiliation(s)
- Victoria Shi
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Surbhi Grover
- Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yi Huang
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Premal H Thaker
- Obstetrics and Gynecology, Washington University in St Louis, St Louis, Missouri, USA
| | - Lindsay M Kuroki
- Obstetrics and Gynecology, Washington University in St Louis, St Louis, Missouri, USA
| | - Matthew A Powell
- Obstetrics and Gynecology, Washington University in St Louis, St Louis, Missouri, USA
| | - David G Mutch
- Obstetrics and Gynecology, Washington University in St Louis, St Louis, Missouri, USA
| | - Jessika A Contreras
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Julie K Schwarz
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Perry W Grigsby
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Stephanie Markovina
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
4
|
Huang Y, Wan XW, Du YT, Feng Y, Yang LS, Liu YB, Chen T, Zhu Z, Xu YT, Wang CC. Norcantharidin Enhances the Antitumor Effect of 5-Fluorouracil by Inducing Apoptosis of Cervical Cancer Cells: Network Pharmacology, Molecular Docking, and Experimental Validation. Curr Issues Mol Biol 2024; 46:3906-3918. [PMID: 38785510 PMCID: PMC11120450 DOI: 10.3390/cimb46050242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The high recurrence rate of cervical cancer is a leading cause of cancer deaths in women. 5-Fluorouracil (5-FU) is an antitumor drug used to treat many types of cancer, but its diminishing effectiveness and side effects limit its use. Norcantharidin (NCTD), a demethylated derivative of cantharidin, exhibits various biological activities. Here, we investigated whether NCTD could potentiate 5-FU to induce cervical cancer cell death. To assess the cell viability and synergistic effects of the drugs, cell counting kit-8 and colony formation assays were performed using HR-HPV-positive cervical cancer cell lines. Annexin V-FITC/PI staining and TUNEL assays were performed to confirm the induction of apoptosis. The synergistic effect of NCTD on the antitumor activity of 5-FU was analyzed using network pharmacology, molecular docking, and molecular dynamics simulations. Apoptosis-related proteins were examined using immunoblotting. The combination of NCTD and 5-FU was synergistic in cervical cancer cell lines. Network pharmacological analysis identified 10 common targets of NCTD and 5-FU for cervical cancer treatment. Molecular docking showed the strong binding affinity of both compounds with CA12, CASP9, and PTGS1. Molecular dynamics simulations showed that the complex system of both drugs with caspase-9 could be in a stable state. NCTD enhanced 5-FU-mediated cytotoxicity by activating apoptosis-related proteins. NCTD acts synergistically with 5-FU to inhibit cervical cancer cell proliferation. NCTD enhances 5-FU-induced apoptosis in cervical cancer cell lines via the caspase-dependent pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheng-Cheng Wang
- GuiZhou University Medical College, Guiyang 550025, China; (Y.H.); (X.-W.W.); (Y.-T.D.); (Y.F.); (L.-S.Y.); (Y.-B.L.); (T.C.); (Z.Z.); (Y.-T.X.)
| |
Collapse
|
5
|
Martini A, Turato C, Cannito S, Quarta S, Biasiolo A, Ruvoletto M, Novo E, Marafatto F, Guerra P, Tonon M, Clemente N, Bocca C, Piano SS, Guido M, Gregori D, Parola M, Angeli P, Pontisso P. The polymorphic variant of SerpinB3 (SerpinB3-PD) is associated with faster cirrhosis decompensation. Aliment Pharmacol Ther 2024; 59:380-392. [PMID: 37990490 DOI: 10.1111/apt.17804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND SerpinB3 is a cysteine protease inhibitor involved in liver disease progression due to its proinflammatory and profibrogenic properties. The polymorphic variant SerpinB3-PD (SB3-PD), presents a substitution in its reactive centre loop, determining the gain of function. AIMS To disclose the clinical characteristics of a cohort of patients with cirrhosis in relation to the presence of SB3-PD and to assess the effect of this genetic variant on fibrogenic and inflammatory cytokines in vitro. METHODS We assessed SB3 polymorphism in 90 patients with cirrhosis, prospectively followed up in our referral centre. We used HepG2 and HuH-7 cells transfected to overexpress either wild-type SB3 (SB3-WT) or SB3-PD to assess their endogenous effect, while LX2 and THP-1 cells were treated with exogenous SB3-WT or SB3-PD proteins. RESULTS Patients carrying SB3-PD had more severe portal hypertension and higher MELD scores, than patients carrying SB3-WT. In multivariate analysis, SB3-PD was an independent predictor of cirrhosis complications. Patients with SB3-PD polymorphism presented with more severe liver fibrosis and inflammatory features. Hepatoma cells overexpressing SB3-PD showed higher TGF-β1 expression than controls. The addition of recombinant SB3-PD induced an up-regulation of TGF-β1 in LX2 cells and a more prominent inflammatory profile in THP-1 cells, compared to the effect of SB3-WT protein. CONCLUSIONS The polymorphic variant SB3-PD is highly effective in determining activation of TGF-β1 and inflammation in vitro. Patients with cirrhosis who carry SB3-PD polymorphism may be more prone to develop severe liver disease progression. However, further validation studies are warranted to support the in vivo relevance of this polymorphism.
Collapse
Affiliation(s)
- Andrea Martini
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Santina Quarta
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Alessandra Biasiolo
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Mariagrazia Ruvoletto
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Erica Novo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Filippo Marafatto
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Marta Tonon
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Nausicaa Clemente
- Department of Health Science, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Claudia Bocca
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Salvatore Silvio Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Maria Guido
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maurizio Parola
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| |
Collapse
|
6
|
Cao F, Sun H, Yang Z, Bai Y, Hu X, Hou Y, Bian X, Liu Y. Multiple approaches revealed MGc80-3 as a somatic hybrid with HeLa cells rather than a gastric cancer cell line. Int J Cancer 2024; 154:155-168. [PMID: 37543987 DOI: 10.1002/ijc.34677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
The short-tandem-repeats (STR) profiles of MGc80-3 and HeLa partially overlap, raising suspicion of contamination in the MGc80-3 cell line. However, there has not been any relevant study demonstrating whether MGc80-3 was fully replaced by HeLa cells, just mixed with HeLa cells (co-existing), or was a somatic hybrid with HeLa cells. In addition to STR profiling, various approaches, including single nucleotide polymorphisms genotyping, polymerase chain reaction, screening for human papillomaviruses type 18 (HPV-18) fragment, chromosome karyotyping, pathological examination of xenografts, tissue-specific-90-gene expression signature and high-throughput RNA sequencing were used to determine the nature of MGc80-3. Our study found that the abnormal STR profile, partially overlapping with that of HeLa cells (64.62% to 71.64%), could not verify MGc80-3 as a HeLa cell line. However, the STR 13.3 repeat allele in the D13S317 locus that seemed to be unique to HeLa cells was detected in MGc80-3. Almost all the MGc80-3 cells exhibited HPV-18 fragments in the genome as well as certain HeLa marker chromosomes, such as M7 and M12. The molecular assay of the 90-gene expression signature still considered MGc80-3 as a stomach cancer using an algorithmic analysis. The expression pattern of multiple genes in MGc80-3 was quite different from that in HeLa cells, which showed that certain characteristics belonged to gastric cancer cell lines. High throughput RNA sequencing showed the distinct patterns of gene expression in MGc80-3. In conclusion, MGc80-3 cell line is a somatic hybrid with HeLa cells rather than a pure gastric cancer cell line.
Collapse
Affiliation(s)
- Fang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Hao Sun
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhenli Yang
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yanhua Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Xiao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital &Institute, Beijing, China
| | - Yuhong Hou
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaocui Bian
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yuqin Liu
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Fan J, Lu F, Qin T, Peng W, Zhuang X, Li Y, Hou X, Fang Z, Yang Y, Guo E, Yang B, Li X, Fu Y, Kang X, Wu Z, Han L, Mills GB, Ma X, Li K, Wu P, Ma D, Chen G, Sun C. Multiomic analysis of cervical squamous cell carcinoma identifies cellular ecosystems with biological and clinical relevance. Nat Genet 2023; 55:2175-2188. [PMID: 37985817 DOI: 10.1038/s41588-023-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cervical squamous cell carcinoma (CSCC) exhibits a limited response to immune-checkpoint blockade. Here we conducted a multiomic analysis encompassing single-cell RNA sequencing, spatial transcriptomics and spatial proteomics, combined with genetic and pharmacological perturbations to systematically develop a high-resolution and spatially resolved map of intratumoral expression heterogeneity in CSCC. Three tumor states (epithelial-cytokeratin, epithelial-immune (Epi-Imm) and epithelial senescence), recapitulating different stages of squamous differentiation, showed distinct tumor immune microenvironments. Bidirectional interactions between epithelial-cytokeratin malignant cells and immunosuppressive cancer-associated fibroblasts form an immune exclusionary microenvironment through transforming growth factor β pathway signaling mediated by FABP5. In Epi-Imm tumors, malignant cells interact with natural killer and T cells through interferon signaling. Preliminary analysis of samples from a cervical cancer clinical trial ( NCT04516616 ) demonstrated neoadjuvant chemotherapy induces a state transition to Epi-Imm, which correlates with pathological complete remission following treatment with immune-checkpoint blockade. These findings deepen the understanding of cellular state diversity in CSCC.
Collapse
Affiliation(s)
- Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenju Peng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xucui Zhuang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinuo Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Hou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunyi Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ensong Guo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zimeng Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Han
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Gordon B Mills
- Division of Oncological Sciences, Oregon Health and Sciences University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
| | - Xiangyi Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Wu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecological Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Quarta S, Cappon A, Turato C, Ruvoletto M, Cannito S, Villano G, Biasiolo A, Maggi M, Protopapa F, Bertazza L, Fasolato S, Parola M, Pontisso P. SerpinB3 Upregulates Low-Density Lipoprotein Receptor-Related Protein (LRP) Family Members, Leading to Wnt Signaling Activation and Increased Cell Survival and Invasiveness. BIOLOGY 2023; 12:771. [PMID: 37372056 DOI: 10.3390/biology12060771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Abnormal activation of the Wnt-β-catenin signaling cascade is involved in tumor growth and dissemination. SerpinB3 has been shown to induce β-catenin, and both molecules are overexpressed in tumors, particularly in those with poor prognoses. The aim of this study was to evaluate the ability of SerpinB3 to modulate the Wnt pathway in liver cancer and in monocytic cells, the main type of inflammatory cells in the tumor microenvironment. The Wnt cascade, Wnt co-receptors, and low-density lipoprotein receptor-related protein (LRP) members were analyzed in different cell lines and human monocytes in the presence or absence of SerpinB3. The Wnt-β-catenin axis was also evaluated in liver tumors induced in mice with different extents of SeprinB3 expression. In monocytic cells, SerpinB3 induced a significant upregulation of Wnt-1/7, nuclear β-catenin, and c-Myc, which are associated with increased cell lifespan and proliferation. In liver tumors in mice, the expression of β-catenin was significantly correlated with the presence of SerpinB3. In hepatoma cells, Wnt co-receptors LRP-5/6 and LRP-1, implicated in cell survival and invasiveness, were upregulated by SerpinB3. The LRP pan-inhibitor RAP not only induced a decrease in LRP expression, but also a dose-dependent reduction in SerpinB3-induced invasiveness. In conclusion, SerpinB3 determines the activation of the Wnt canonical pathway and cell invasiveness through the upregulation of LRP family members.
Collapse
Affiliation(s)
- Santina Quarta
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Andrea Cappon
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | | - Stefania Cannito
- Department of Clinical and Biological Sciences, University of Torino, 10124 Turin, Italy
| | - Gianmarco Villano
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35128 Padua, Italy
| | | | - Maristella Maggi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Francesca Protopapa
- Department of Clinical and Biological Sciences, University of Torino, 10124 Turin, Italy
| | - Loris Bertazza
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Silvano Fasolato
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, University of Torino, 10124 Turin, Italy
| | | |
Collapse
|
9
|
Chen L, Shi V, Wang S, Freeman R, Ruiz F, Jayachandran K, Zhang J, Cosper P, Sun L, Luke CJ, Spina C, Grigsby PW, Schwarz JK, Markovina S. SCCA1/SERPINB3 promotes suppressive immune environment via STAT-dependent chemokine production, blunting the therapy-induced T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526675. [PMID: 36778224 PMCID: PMC9915608 DOI: 10.1101/2023.02.01.526675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Radiotherapy is a commonly used cancer treatment; however, patients with high serum squamous cell carcinoma antigen (SCCA1/SERPINB3) are associated with resistance and poor prognosis. Despite being a strong clinical biomarker, the modulation of SERPINB3 in tumor immunity is poorly understood. We investigated the microenvironment of SERPINB3 high tumors through RNAseq of primary cervix tumors and found that SERPINB3 was positively correlated with CXCL1/8, S100A8/A9 and myeloid cell infiltration. Induction of SERPINB3 in vitro resulted in increased CXCL1/8 and S100A8/A9 production, and supernatants from SERPINB3-expressing cultures attracted monocytes and MDSCs. In murine tumors, the orthologue mSerpinB3a promoted MDSC, TAM, and M2 macrophage infiltration contributing to an immunosuppressive phenotype, which was further augmented upon radiation. Radiation-enhanced T cell response was muted in SERPINB3 tumors, whereas Treg expansion was observed. A STAT-dependent mechanism was implicated, whereby inhibiting STAT signaling with ruxolitinib abrogated suppressive chemokine production. Patients with elevated pre-treatment serum SCCA and high pSTAT3 had increased intratumoral CD11b+ myeloid cell compared to patients with low SCCA and pSTAT3 cohort that had overall improved cancer specific survival after radiotherapy. These findings provide a preclinical rationale for targeting STAT signaling in tumors with high SERPINB3 to counteract the immunosuppressive microenvironment and improve response to radiation.
Collapse
|
10
|
Cathepsins Trigger Cell Death and Regulate Radioresistance in Glioblastoma. Cells 2022; 11:cells11244108. [PMID: 36552871 PMCID: PMC9777369 DOI: 10.3390/cells11244108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment of glioblastoma (GBM) remains very challenging, and it is particularly important to find sensitive and specific molecular targets. In this work, we reveal the relationship between the expression of cathepsins and radioresistance in GBM. We analyzed cathepsins (cathepsin B, cathepsin D, cathepsin L, and cathepsin Z/X), which are highly associated with the radioresistance of GBM by regulating different types of cell death. Cathepsins could be potential targets for GBM treatment.
Collapse
|
11
|
Single-cell transcriptomics reveals cellular heterogeneity and molecular stratification of cervical cancer. Commun Biol 2022; 5:1208. [DOI: 10.1038/s42003-022-04142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCervical cancer (CC) is the most common gynecological malignancy, whose cellular heterogeneity has not been fully understood. Here, we performed single-cell RNA sequencing (scRNA-seq) to survey the transcriptomes of 57,669 cells derived from three CC tumors with paired normal adjacent non-tumor (NAT) samples. Single-cell transcriptomics analysis revealed extensive heterogeneity in malignant cells of human CCs, wherein epithelial subpopulation exhibited different genomic and transcriptomic signatures. We also identified cancer-associated fibroblasts (CAFs) that may promote tumor progression of CC, and further distinguished inflammatory CAF (iCAF) and myofibroblastic CAF (myCAF). CD8+ T cell diversity revealed both proliferative (MKI67+) and non-cycling exhausted (PDCD1+) subpopulations at the end of the trajectory path. We used the epithelial signature genes derived from scRNA-seq to deconvolute bulk RNA-seq data of CC, identifying four different CC subtypes, namely hypoxia (S-H subtype), proliferation (S-P subtype), differentiation (S-D subtype), and immunoactive (S-I subtype) subtype. The S-H subtype showed the worst prognosis, while CC patients of the S-I subtype had the longest overall survival time. Our results lay the foundation for precision prognostic and therapeutic stratification of CC.
Collapse
|
12
|
Lauko A, Volovetz J, Turaga SM, Bayik D, Silver DJ, Mitchell K, Mulkearns-Hubert EE, Watson DC, Desai K, Midha M, Hao J, McCortney K, Steffens A, Naik U, Ahluwalia MS, Bao S, Horbinski C, Yu JS, Lathia JD. SerpinB3 drives cancer stem cell survival in glioblastoma. Cell Rep 2022; 40:111348. [PMID: 36103817 PMCID: PMC9513382 DOI: 10.1016/j.celrep.2022.111348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 12/11/2022] Open
Abstract
Despite therapeutic interventions for glioblastoma (GBM), cancer stem cells (CSCs) drive recurrence. The precise mechanisms underlying CSC resistance, namely inhibition of cell death, are unclear. We built on previous observations that the high cell surface expression of junctional adhesion molecule-A drives CSC maintenance and identified downstream signaling networks, including the cysteine protease inhibitor SerpinB3. Using genetic depletion approaches, we found that SerpinB3 is necessary for CSC maintenance, survival, and tumor growth, as well as CSC pathway activation. Knockdown of SerpinB3 also increased apoptosis and susceptibility to radiation therapy. SerpinB3 was essential to buffer cathepsin L-mediated cell death, which was enhanced with radiation. Finally, we found that SerpinB3 knockdown increased the efficacy of radiation in pre-clinical models. Taken together, our findings identify a GBM CSC-specific survival mechanism involving a cysteine protease inhibitor, SerpinB3, and provide a potential target to improve the efficacy of GBM therapies against therapeutically resistant CSCs.
Collapse
Affiliation(s)
- Adam Lauko
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Josephine Volovetz
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
| | - Soumya M Turaga
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Defne Bayik
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Daniel J Silver
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Kelly Mitchell
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Erin E Mulkearns-Hubert
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dionysios C Watson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Division of Hematology/Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kiran Desai
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Manav Midha
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Jing Hao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kathleen McCortney
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alicia Steffens
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ulhas Naik
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Shideng Bao
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer S Yu
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA.
| |
Collapse
|