1
|
Rathbone E, Fu D. Quantitative Optical Imaging of Oxygen in Brain Vasculature. J Phys Chem B 2024; 128:6975-6989. [PMID: 38991095 DOI: 10.1021/acs.jpcb.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The intimate relationship between neuronal activity and cerebral oxygenation underpins fundamental brain functions like cognition, sensation, and motor control. Optical imaging offers a noninvasive approach to assess brain oxygenation and often serves as an indirect proxy for neuronal activity. However, deciphering neurovascular coupling─the intricate interplay between neuronal activity, blood flow, and oxygen delivery─necessitates independent, high spatial resolution, and high temporal resolution measurements of both microvasculature oxygenation and neuronal activation. This Perspective examines the established optical techniques employed for brain oxygen imaging, specifically functional near-infrared spectroscopy, photoacoustic imaging, optical coherence tomography, and two-photon phosphorescent lifetime microscopy, highlighting their fundamental principles, strengths, and limitations. Several other emerging optical techniques are also introduced. Finally, we discuss key technological challenges and future directions for quantitative optical oxygen imaging, paving the way for a deeper understanding of oxygen metabolism in the brain.
Collapse
Affiliation(s)
- Emily Rathbone
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Dunnington EL, Wong BS, Fu D. Innovative Approaches for Drug Discovery: Quantifying Drug Distribution and Response with Raman Imaging. Anal Chem 2024; 96:7926-7944. [PMID: 38625100 PMCID: PMC11108735 DOI: 10.1021/acs.analchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
| | | | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Xu Y, Pan X, Li H, Cao Q, Xu F, Zhang J. Accuracy of Raman spectroscopy in the diagnosis of Alzheimer's disease. Front Psychiatry 2023; 14:1112615. [PMID: 37009107 PMCID: PMC10060832 DOI: 10.3389/fpsyt.2023.1112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveTo systematically evaluate the accuracy of Raman spectroscopy in the diagnosis of Alzheimer's disease.MethodsDatabases including Web of Science, PubMed, The Cochrane Library, EMbase, CBM, CNKI, Wan Fang Data, and VIP were electronically searched for studies on Raman spectroscopy in diagnosis of Alzheimer's disease from inception to November 2022. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias in the included studies. Then, meta-analysis was performed using Meta-Disc1.4 and Stata 16.0 software.ResultsA total of eight studies were finally included. The pooled sensitivity of Raman spectroscopy was 0.86 [95% CI (0.80–0.91)], specificity was 0.87 [95% CI (0.79–0.92)], positive likelihood ratio was 5.50 [95% CI (3.55–8.51)], negative likelihood ratio was 0.17 [95% CI (0.09–0.34)], diagnosis odds ratio and area under the curve of SROC were 42.44 [95% CI (19.80–90.97)] and 0.931, respectively. Sensitivity analysis was carried out after each study was excluded one by one, and the results showed that pooled sensitivity and specificity had no significant change, indicating that the stability of the meta-analysis results was great.ConclusionsOur findings indicated that Raman spectroscopy had high accuracy in the diagnosis of AD, though it still did not rule out the possibility of misdiagnosis and missed diagnosis. Limited by the quantity and quality of the included studies, the above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Yanmei Xu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Pan
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Huan Li
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiongfang Cao
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
- *Correspondence: Fan Xu
| | - Jianshu Zhang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Jianshu Zhang
| |
Collapse
|
4
|
Kwon Y, Hong JH, Kang S, Lee H, Jo Y, Kim KH, Yoon S, Choi W. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat Commun 2023; 14:105. [PMID: 36609405 PMCID: PMC9823103 DOI: 10.1038/s41467-022-35738-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Myelination processes are closely related to higher brain functions such as learning and memory. While their longitudinal observation has been crucial to understanding myelin-related physiology and various brain disorders, skull opening or thinning has been required to secure clear optical access. Here we present a high-speed reflection matrix microscope using a light source with a wavelength of 1.3 μm to reduce tissue scattering and aberration. Furthermore, we develop a computational conjugate adaptive optics algorithm designed for the recorded reflection matrix to optimally compensate for the skull aberrations. These developments allow us to realize label-free longitudinal imaging of cortical myelin through an intact mouse skull. The myelination processes of the same mice were observed from 3 to 10 postnatal weeks to the depth of cortical layer 4 with a spatial resolution of 0.79 μm. Our system will expedite the investigations on the role of myelination in learning, memory, and brain disorders.
Collapse
Affiliation(s)
- Yongwoo Kwon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Sungsam Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Hojun Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seokchan Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea. .,Department of Physics, Korea University, Seoul, 02855, Korea. .,School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 50612, Korea.
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea. .,Department of Physics, Korea University, Seoul, 02855, Korea.
| |
Collapse
|