1
|
Rauch S, Costacurta F, Schöppe H, Peng JY, Bante D, Erisoez EE, Sprenger B, He X, Moghadasi SA, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Wang D, Naschberger A, Dunzendorfer-Matt T, Kaserer T, von Laer D, Heilmann E. Highly specific SARS-CoV-2 main protease (M pro) mutations against the clinical antiviral ensitrelvir selected in a safe, VSV-based system. Antiviral Res 2024; 231:105969. [PMID: 39053514 DOI: 10.1016/j.antiviral.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the SARS-CoV-2 pandemic, the so far two most effective approved antivirals are the protease inhibitors nirmatrelvir, in combination with ritonavir (Paxlovid) and ensitrelvir (Xocova). However, antivirals and indeed all antimicrobial drugs are sooner or later challenged by resistance mutations. Studying such mutations is essential for treatment decisions and pandemic preparedness. At the same time, generating resistant viruses to assess mutants is controversial, especially with pathogens of pandemic potential like SARS-CoV-2. To circumvent gain-of-function research with non-attenuated SARS-CoV-2, a previously developed safe system based on a chimeric vesicular stomatitis virus dependent on the SARS-CoV-2 main protease (VSV-Mpro) was used to select mutations against ensitrelvir. Ensitrelvir is clinically especially relevant due to its single-substance formulation, avoiding drug-drug interactions by the co-formulated CYP3A4 inhibitor ritonavir in Paxlovid. By treating VSV-Mpro with ensitrelvir, highly-specific resistant mutants against this inhibitor were selected, while being still fully or largely susceptible to nirmatrelvir. We then confirmed several ensitrelvir-specific mutants in gold standard enzymatic assays and SARS-CoV-2 replicons. These findings indicate that the two inhibitors can have distinct viral resistance profiles, which could determine treatment decisions.
Collapse
Affiliation(s)
- Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ju-Yi Peng
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ela Emilie Erisoez
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Bernhard Sprenger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Austria
| | - Xi He
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dai Wang
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Andreas Naschberger
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria; Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
2
|
Sancineto L, Mangiavacchi F, Dabrowska A, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Scimmi C, Ceccucci V, Kong J, Zhao Y, Ciancaleoni G, Nascimento V, Rizzuti B, Bortoli M, Orian L, Kula-Pacurar A, Yang H, Ścianowski J, Lei Y, Pyrc K, Santi C. New insights in the mechanism of the SARS-CoV-2 M pro inhibition by benzisoselenazolones and diselenides. Sci Rep 2024; 14:24751. [PMID: 39433805 PMCID: PMC11494035 DOI: 10.1038/s41598-024-75519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Although global vaccination campaigns alleviated the SARS-CoV-2 pandemic in terms of morbidity and mortality, the ability of the virus to originate mutants may reduce the efficacy of vaccines, posing a serious risk of a renewed pandemic. There is therefore a need to develop small molecules capable of targeting conserved viral targets, such as the main protease (Mpro). Here, a series of benzisoselenazolones and diselenides were tested for their ability to inhibit Mpro; then the most potent compounds were measured for antiviral activity in vitro, and the mechanism of action was investigated. Density functional theory calculations, molecular docking and molecular dynamics simulations were also used to elucidate the protein/drug interaction. Finally, a bio-organic model was established to study the reaction between selenorganic compounds and biologically relevant thiols to unveil possible metabolic pathways of such compounds. The overall results contribute to the identification of a series of novel Se-containing molecules active against SARS-CoV-2 and to the clarification of some important aspects in the mechanisms of action of such inhibitors targeting SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06100, PG, Italy
| | - Francesca Mangiavacchi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06100, PG, Italy
| | - Agnieszka Dabrowska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Agata J Pacuła-Miszewska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, Torun, Poland
| | | | - Cecilia Scimmi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06100, PG, Italy
| | - Veronica Ceccucci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06100, PG, Italy
| | - Juan Kong
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale (DCCI), Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, 56124, Italy
| | - Vanessa Nascimento
- Departamento de Quımica Organica, Laboratorio de Sintese e Aplicaçao de Substancias Supramoleculares e Organocalcogenios (SupraSelen), Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Niteroi, 24020-141, RJ, Brazil
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende, University of Calabria, Rende, 87036, CS, Italy
- Institute of Biocomputation and Physics of Complex Systems, Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | - Marco Bortoli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, 0315, Norway
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, 35131, Italy
| | - Anna Kula-Pacurar
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jacek Ścianowski
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, Torun, Poland
| | - Ying Lei
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland.
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06100, PG, Italy.
| |
Collapse
|
3
|
Vlachou A, Nchioua R, Regensburger K, Kirchhoff F, Kmiec D. A Gaussia luciferase reporter assay for the evaluation of coronavirus Nsp5/3CLpro activity. Sci Rep 2024; 14:20697. [PMID: 39237598 PMCID: PMC11377810 DOI: 10.1038/s41598-024-71305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Human coronaviruses (hCoVs) infect millions of people every year. Among these, MERS, SARS-CoV-1, and SARS-CoV-2 caused significant morbidity and mortality and their emergence highlights the risk of possible future coronavirus outbreaks. Therefore, broadly-active anti-coronavirus drugs are needed. Pharmacological inhibition of the hCoV protease Nsp5 (3CLpro) is clinically beneficial as shown by the wide and effective use of Paxlovid (nirmatrelvir, ritonavir). However, further treatment options are required due to the risk of drug resistance. To facilitate the assessment of coronavirus protease function and its pharmacological inhibition, we developed an assay allowing rapid and reliable quantification of Nsp5 activity under biosafety level 1 conditions. It is based on an ACE2-Gal4 transcription factor fusion protein separated by a Nsp5 recognition site. Cleavage by Nsp5 releases the Gal4 transcription factor, which then induces the expression of Gaussia luciferase. Our assay is compatible with Nsp5 proteases from all hCoVs and allows simultaneous measurement of inhibitory and cytotoxic effects of the tested compounds. Proof-of-concept measurements confirmed that nirmatrelvir, GC376 and lopinavir inhibit SARS-CoV-2 Nsp5 function. Furthermore, the assay accurately predicted the impact of Nsp5 mutations on catalytic activity and inhibitor sensitivity. Overall, the reporter assay is suitable for evaluating viral protease activity.
Collapse
Affiliation(s)
- Asimenia Vlachou
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kerstin Regensburger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Krismer L, Schöppe H, Rauch S, Bante D, Sprenger B, Naschberger A, Costacurta F, Fürst A, Sauerwein A, Rupp B, Kaserer T, von Laer D, Heilmann E. Study of key residues in MERS-CoV and SARS-CoV-2 main proteases for resistance against clinically applied inhibitors nirmatrelvir and ensitrelvir. NPJ VIRUSES 2024; 2:23. [PMID: 38933182 PMCID: PMC11196219 DOI: 10.1038/s44298-024-00028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024]
Abstract
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an epidemic, zoonotically emerging pathogen initially reported in Saudi Arabia in 2012. MERS-CoV has the potential to mutate or recombine with other coronaviruses, thus acquiring the ability to efficiently spread among humans and become pandemic. Its high mortality rate of up to 35% and the absence of effective targeted therapies call for the development of antiviral drugs for this pathogen. Since the beginning of the SARS-CoV-2 pandemic, extensive research has focused on identifying protease inhibitors for the treatment of SARS-CoV-2. Our intention was therefore to assess whether these protease inhibitors are viable options for combating MERS-CoV. To that end, we used previously established protease assays to quantify inhibition of SARS-CoV-2, MERS-CoV and other main proteases. Nirmatrelvir inhibited several of these proteases, whereas ensitrelvir was less broadly active. To simulate nirmatrelvir's clinical use against MERS-CoV and subsequent resistance development, we applied a safe, surrogate virus-based system. Using the surrogate virus, we previously selected hallmark mutations of SARS-CoV-2-Mpro, such as T21I, M49L, S144A, E166A/K/V and L167F. In the current study, we selected a pool of MERS-CoV-Mpro mutants, characterized the resistance and modelled the steric effect of catalytic site mutants S142G, S142R, S147Y and A171S.
Collapse
Affiliation(s)
- Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Sprenger
- Institute of Biochemistry, University of Innsbruck, CMBI – Center for Molecular Biosciences Innsbruck, Innsbruck, 6020 Austria
| | - Andreas Naschberger
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | | | - Anna Fürst
- Institute of Molecular Immunology, Technical University of Munich, Munich, 81675 Germany
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| |
Collapse
|
5
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife 2024; 12:RP90316. [PMID: 38814682 PMCID: PMC11139479 DOI: 10.7554/elife.90316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
6
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.10.527147. [PMID: 37502865 PMCID: PMC10370084 DOI: 10.1101/2023.02.10.527147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jessica H. Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
7
|
Zmudzinski M, Rut W, Olech K, Granda J, Giurg M, Burda-Grabowska M, Kaleta R, Zgarbova M, Kasprzyk R, Zhang L, Sun X, Lv Z, Nayak D, Kesik-Brodacka M, Olsen SK, Weber J, Hilgenfeld R, Jemielity J, Drag M. Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PL pro and M pro proteases, and nsp14 guanine N7-methyltransferase. Sci Rep 2023; 13:9161. [PMID: 37280236 DOI: 10.1038/s41598-023-35907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Kamila Olech
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Jarosław Granda
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Małgorzata Burda-Grabowska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Rafał Kaleta
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Michala Zgarbova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague, Czech Republic
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Linlin Zhang
- Institute of Molecular Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Zongyang Lv
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Digant Nayak
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | | | - Shaun K Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague, Czech Republic
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
8
|
Moghadasi SA, Heilmann E, Khalil AM, Nnabuife C, Kearns FL, Ye C, Moraes SN, Costacurta F, Esler MA, Aihara H, von Laer D, Martinez-Sobrido L, Palzkill T, Amaro RE, Harris RS. Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. SCIENCE ADVANCES 2023; 9:eade8778. [PMID: 36989354 PMCID: PMC10058310 DOI: 10.1126/sciadv.ade8778] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Abstract
Vaccines and drugs have helped reduce disease severity and blunt the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease [Mpro; 3C-like protease (3CLpro)] of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Christina Nnabuife
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fiona L. Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | | | - Morgan A. Esler
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Heilmann E, Costacurta F, Moghadasi SA, Ye C, Pavan M, Bassani D, Volland A, Ascher C, Weiss AKH, Bante D, Harris RS, Moro S, Rupp B, Martinez-Sobrido L, von Laer D. SARS-CoV-2 3CL pro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci Transl Med 2023; 15:eabq7360. [PMID: 36194133 PMCID: PMC9765458 DOI: 10.1126/scitranslmed.abq7360] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first protease inhibitor specifically developed against the SARS-CoV-2 protease 3CLpro that has been licensed for clinical use. To identify mutations that confer resistance to this protease inhibitor, we engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein composed of the VSV glycoprotein (G), the SARS-CoV-2 3CLpro, and the VSV polymerase (L). Viral replication was thus dependent on the autocatalytic processing of this precursor protein by 3CLpro and release of the functional viral proteins G and L, and replication of this chimeric VSV was effectively inhibited by nirmatrelvir. Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance was confirmed by retesting nirmatrelvir against the selected mutations in additional VSV-based systems, in an independently developed cellular system, in a biochemical assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these compounds. Furthermore, we found that most of these resistance mutations already existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Andre Volland
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Claudia Ascher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, 6020, Austria
| | | | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020, Austria
- k.-k. Hofkristallamt, San Diego, CA 92084, United States
| | | | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| |
Collapse
|
10
|
Yang Z, Cai X, Ye Q, Zhao Y, Li X, Zhang S, Zhang L. High-Throughput Screening for the Potential Inhibitors of SARS-CoV-2 with Essential Dynamic Behavior. Curr Drug Targets 2023; 24:532-545. [PMID: 36876836 DOI: 10.2174/1389450124666230306141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
Global health security has been challenged by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. Due to the lengthy process of generating vaccinations, it is vital to reposition currently available drugs in order to relieve anti-epidemic tensions and accelerate the development of therapies for Coronavirus Disease 2019 (COVID-19), the public threat caused by SARS-CoV-2. High throughput screening techniques have established their roles in the evaluation of already available medications and the search for novel potential agents with desirable chemical space and more cost-effectiveness. Here, we present the architectural aspects of highthroughput screening for SARS-CoV-2 inhibitors, especially three generations of virtual screening methodologies with structural dynamics: ligand-based screening, receptor-based screening, and machine learning (ML)-based scoring functions (SFs). By outlining the benefits and drawbacks, we hope that researchers will be motivated to adopt these methods in the development of novel anti- SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xinhui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
11
|
Moghadasi SA, Heilmann E, Khalil AM, Nnabuife C, Kearns FL, Ye C, Moraes SN, Costacurta F, Esler MA, Aihara H, von Laer D, Martinez-Sobrido L, Palzkill T, Amaro RE, Harris RS. Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.07.503099. [PMID: 35982678 PMCID: PMC9387136 DOI: 10.1101/2022.08.07.503099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Vaccines and drugs have helped reduce disease severity and blunt the spread of SARS-CoV-2. However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease (Mpro/3CLpro) of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, Minnesota, USA, 55455
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, Texas, USA, 78227
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt, 44511
| | - Christina Nnabuife
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA, 77030
| | - Fiona L. Kearns
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA, 92093
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA, 78227
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, Minnesota, USA, 55455
| | | | - Morgan A. Esler
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, Minnesota, USA, 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, Minnesota, USA, 55455
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA, 77030
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA, 92093
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, Minnesota, USA, 55455
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio; San Antonio, Texas, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health San Antonio; San Antonio, Texas, USA, 78229
| |
Collapse
|
12
|
Qin Z, Sun Y, Zhang J, Zhou L, Chen Y, Huang C. Lessons from SARS‑CoV‑2 and its variants (Review). Mol Med Rep 2022; 26:263. [PMID: 35730623 PMCID: PMC9260876 DOI: 10.3892/mmr.2022.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has swept through mainland China by human-to-human transmission. The rapid spread of SARS-CoV-2 and its variants, including the currently prevalent Omicron strain, pose a serious threat worldwide. The present review summarizes epidemiological investigation and etiological analysis of genomic, epidemiological, and pathological characteristics of the original strain and its variants, as well as progress in diagnosis and treatment. Prevention and control measures used during the current Omicron pandemic are discussed to provide further knowledge of SARS-CoV-2.
Collapse
Affiliation(s)
- Ziwen Qin
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Yan Sun
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jian Zhang
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ling Zhou
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yujuan Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Chuanjun Huang
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| |
Collapse
|