1
|
Wang S, Yuan Z, Gao X, Wu J, Ren Y, Yu X, Li J, Wei W. Global research trends on the links between gut microbiota and radiotherapy: a bibliometric analysis (2004-2023). Front Cell Infect Microbiol 2024; 14:1414196. [PMID: 39295732 PMCID: PMC11409093 DOI: 10.3389/fcimb.2024.1414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Background There is a crosstalk between gut microbiota and radiotherapy. The aim of this study is to use bibliometric analysis to explore the research status and development trends of research on gut microbiota and radiotherapy. Methods A literature search regarding publications on gut microbiota and radiotherapy from 2004 to 2023 was retrieved. CiteSpace and VOSviewer were used to conduct the bibliometric analysis. The growth rate of publications, leading countries and institutions, preferred journals, top authors and co-cited authors, top co-cited references, keywords and citation were analyzed in this study. Results A total of 2821 papers were extracted. The number of papers has increased rapidly over the past decade, especially after 2017. The USA and China had the most publications and made great contributions to this field. The Chinese Academy of Sciences stood out as the institution with the highest number of publications, followed by the Chinese Academy of Medical Sciences & Peking Union Medical College. The most influential authors were Fan Saijun and Li Yuan. PLoS One had the most publications and the most total citations. Highly cited papers and high-frequency keywords illustrated the current status and trends. Furthermore, analysis of keyword with burst revealed that immunotherapy, acid, intestinal barrier, therapy, immunotherapy, fecal microbiota transplantation, etc, are at the forefront of research in this area. Conclusion This study provides an overview of research on gut microbiota and radiotherapy, highlighting influential contributors, impactful publications, and emerging trends. Our finding suggests avenues for further exploration to improve clinical outcomes.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohui Gao
- Department of Oncology, The Nuclear Industry 416 Hospital, Chengdu, China
| | - Jiaxing Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Yu
- Tuberculosis Hospital of Shaanxi Province, Xi'an, China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Zhang X, Guan L, Zhu L, Wang K, Gao Y, Li J, Yan S, Ji N, Zhou Y, Yao X, Li B. A review of the extraction and purification methods, biological activities, and applications of active compounds in Acanthopanax senticosus. Front Nutr 2024; 11:1391601. [PMID: 38846546 PMCID: PMC11153764 DOI: 10.3389/fnut.2024.1391601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Acanthopanax senticosus (AS) is a geo-authentic crude medicinal plant that grows in China, Korea, Russia, and Japan. AS contains bioactive compounds such as eleutherosides, polysaccharides, and flavonoids. It is also a key traditional herb in the Red List of Chinese Species. AS is mainly distributed in Northeast China, specifically in Heilongjiang, Jilin, and Liaoning provinces. Its active compounds contribute to significant biological activities, including neuroprotective, antioxidant, anti-fatigue, and antitumor effects. However, the extraction methods of active compounds are complex, the extraction efficiency is poor, and the structure-activity relationship is unclear. This study focused on the nutrients in AS, including protein, carbohydrates, and lipids. Particularly, the active ingredients (eleutherosides, polysaccharides, and flavonoids) in AS and their extraction and purification methods were analyzed and summarized. The biological activities of extracts have been reviewed, and the mechanisms of anti-oxidation, antitumor, anti-inflammation, and other activities are introduced in detail. The applications of AS in various domains, such as health foods, medicines, and animal dietary supplements, are then reported. Compared with other extraction methods, ultrasonic or microwave extraction improves efficiency, yet they can damage structures. Challenges arise in the recovery of solvents and in achieving extraction efficiency when using green solvents, such as deep eutectic solvents. Improvements can be made by combining extraction methods and controlling conditions (power, temperature, and time). Bioactive molecules and related activities are exposited clearly. The applications of AS have not been widely popularized, and the corresponding functions require further development.
Collapse
Affiliation(s)
- Xindi Zhang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Lijun Guan
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Ling Zhu
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Kunlun Wang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Yang Gao
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Jialei Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Song Yan
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Nina Ji
- Soybean Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ye Zhou
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Xinmiao Yao
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Bo Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| |
Collapse
|
3
|
Xie WY, Ji ZH, Ren WZ, Zhao PS, Wei FH, Hu J, Yuan B, Gao W. Wheat peptide alleviates DSS-induced colitis by activating the Keap1-Nrf2 signaling pathway and maintaining the integrity of the gut barrier. Food Funct 2024; 15:5466-5484. [PMID: 38690672 DOI: 10.1039/d3fo04413k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Inflammatory bowel disease (IBD) is difficult to cure, and formulating a dietary plan is an effective means to prevent and treat this disease. Wheat peptide contains a variety of bioactive peptides with anti-inflammatory and antioxidant functions. The results of this study showed that preventive supplementation with wheat peptide (WP) can significantly alleviate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice. WP can increase body weight, alleviate colon shortening, and reduce disease activity index (DAI) scores. In addition, WP improved intestinal microbial disorders in mice with colitis. Based on LC-MS, a total of 313 peptides were identified in WP, 4 of which were predicted to be bioactive peptides. The regulatory effects of WP and four bioactive peptides on the Keap1-Nrf2 signaling pathway were verified in Caco-2 cells. In conclusion, this study demonstrated that WP alleviates DSS-induced colitis by helping maintain gut barrier integrity and targeting the Keap1-Nrf2 axis; these results provided a rationale for adding WP to dietary strategies to prevent IBD.
Collapse
Affiliation(s)
- Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - JinPing Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
4
|
Wang W, Cui B, Nie Y, Sun L, Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024; 15:83-97. [PMID: 37470727 PMCID: PMC10833463 DOI: 10.1093/procel/pwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| |
Collapse
|
5
|
Lei S, Wu S. Zang Siwei Qingfei Mixture Alleviates Inflammatory Response to Attenuate Acute Lung Injury by the ACE2/NF-κB Signaling Pathway in Mice. Comb Chem High Throughput Screen 2024; 27:2871-2884. [PMID: 37957855 DOI: 10.2174/0113862073259884231024111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious lung disease characterized by acute and severe inflammation. Upregulation of ACE2 and inhibition of the NF-κB signaling pathway attenuate LPS-induced ALI. OBJECTIVE To explore whether Zang Siwei Qingfei Mixture inhibits the development of ALI through the ACE2/NF-κB signaling pathway. METHODS Alveolar type II epithelial cells (AEC II) were identified by immunofluorescence staining and flow cytometry. C57BL/6J mice were treated with LPS to establish an ALI model. Cell viability was assessed using CCK8 assays. The levels of ACE, ACE2, p-p38/p38, p- ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 were analyzed by Western blotting. ELISA was applied to detect the levels of TNF-a, IL-6, AGT, and Ang1-7. HE staining was used to observe lung injury. The mRNA expression of ACE, ACE2, and Mas was measured by RT-qPCR. RESULTS AEC II cells were successfully isolated. Treatment with the Zang Siwei Qingfei Mixture resulted in a decrease in ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 levels, while increasing ACE2 levels. Zang Siwei Qingfei mixture also led to a reduction in TNF-α, IL6, and AGT levels, while increasing Ang1-7 level. Histological analysis showed that Zang Siwei Qingfei Mixture treatment improved the alveolar structure of ALI mice and reduced inflammatory infiltration. The pretreatment with MLN-4760, an ACE2 inhibitor, resulted in opposite effects compared to Zang Siwei Qingfei Mixture treatment. CONCLUSION Zang Siwei Qingfei mixture attenuates ALI by regulating the ACE2/NF-κB signaling pathway in mice. This study provides a theoretical foundation for the development of improved ALI treatments.
Collapse
Affiliation(s)
- Si Lei
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| |
Collapse
|
6
|
Lu Y, Gao X, Nan Y, Mohammed SA, Fu J, Wang T, Wang C, Yuan C, Lu F, Liu S. Acanthopanax senticosus Harms improves Parkinson's disease by regulating gut microbial structure and metabolic disorders. Heliyon 2023; 9:e18045. [PMID: 37496895 PMCID: PMC10366437 DOI: 10.1016/j.heliyon.2023.e18045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with an increasing prevalence as the population ages, posing a serious threat to human health, but the pathogenesis remains uncertain. Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) (aqueous ethanol extract), a Chinese herbal medicine, provides obvious and noticeable therapeutic effects on PD. To further investigate the ASH's mechanism of action in treating PD, the structural and functional gut microbiota, as well as intestinal metabolite before and after ASH intervention in the PD mice model, were examined utilizing metagenomics and fecal metabolomics analysis. α-syn transgenic mice were randomly divided into a model and ASH groups, with C57BL/6 mice as a control. The ASH group was gavaged with ASH (45.5 mg/kg/d for 20d). The time of pole climbing and autonomous activity were used to assess motor ability. The gut microbiota's structure, composition, and function were evaluated using Illumina sequencing. Fecal metabolites were identified using UHPLC-MS/MS to construct intestinal metabolites. The findings of this experiment demonstrate that ASH may reduce the climbing time of PD model mice while increasing the number of autonomous movements. The results of metagenomics analysis revealed that ASH could up-regulated Firmicutes and down-regulated Actinobacteria at the phylum level, while Clostridium was up-regulated and Akkermansia was down-regulated at the genus level; it could also recall 49 species from the phylum Firmicutes, Actinobacteria, and Tenericutes. Simultaneously, metabolomics analysis revealed that alpha-Linolenic acid metabolism might be a key metabolic pathway for ASH to impact in PD. Furthermore, metagenomics function analysis and metabolic pathway enrichment analysis revealed that ASH might influence unsaturated fatty acid synthesis and purine metabolism pathways. These metabolic pathways are connected to ALA, Palmitic acid, Adenine, and 16 species of Firmicutes, Actinobacteria, and Tenericutes. Finally, these results indicate that ASH may alleviate the movement disorder of the PD model, which may be connected to the regulation of gut microbiota structure and function as well as the modulation of metabolic disorders by ASH.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shadi A.D. Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana’a, Yemen
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tianyu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Antidepressive Effect of Natural Products and Their Derivatives Targeting BDNF-TrkB in Gut-Brain Axis. Int J Mol Sci 2022; 23:ijms232314968. [PMID: 36499295 PMCID: PMC9737781 DOI: 10.3390/ijms232314968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Modern neurological approaches enable detailed studies on the pathophysiology and treatment of depression. An imbalance in the microbiota-gut-brain axis contributes to the pathogenesis of depression. This extensive review aimed to elucidate the antidepressive effects of brain-derived neurotrophic factor (BDNF)-targeting therapeutic natural products and their derivatives on the gut-brain axis. This information could facilitate the development of novel antidepressant drugs. BDNF is crucial for neuronal genesis, growth, differentiation, survival, plasticity, and synaptic transmission. Signaling via BDNF and its receptor tropomyosin receptor kinase B (TrkB) plays a vital role in the etiopathogenesis of depression and the therapeutic mechanism of antidepressants. This comprehensive review provides information to researchers and scientists for the identification of novel therapeutic approaches for neuropsychiatric disorders, especially depression and stress. Future research should aim to determine the possible causative role of BDNF-TrkB in the gut-brain axis in depression, which will require further animal and clinical research as well as the development of analytical approaches.
Collapse
|