1
|
Wang X, Jowsey WJ, Cheung CY, Smart CJ, Klaus HR, Seeto NE, Waller NJ, Chrisp MT, Peterson AL, Ofori-Anyinam B, Strong E, Nijagal B, West NP, Yang JH, Fineran PC, Cook GM, Jackson SA, McNeil MB. Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis. Nat Commun 2024; 15:9791. [PMID: 39537607 PMCID: PMC11560980 DOI: 10.1038/s41467-024-54072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Drug-resistant strains of Mycobacterium tuberculosis are a major global health problem. Resistance to the front-line antibiotic isoniazid is often associated with mutations in the katG-encoded bifunctional catalase-peroxidase. We hypothesise that perturbed KatG activity would generate collateral vulnerabilities in isoniazid-resistant katG mutants, providing potential pathway targets to combat isoniazid resistance. Whole genome CRISPRi screens, transcriptomics, and metabolomics were used to generate a genome-wide map of cellular vulnerabilities in an isoniazid-resistant katG mutant strain of M. tuberculosis. Here, we show that metabolic and transcriptional remodelling compensates for the loss of KatG but in doing so generates vulnerabilities in respiration, ribosome biogenesis, and nucleotide and amino acid metabolism. Importantly, these vulnerabilities are more sensitive to inhibition in an isoniazid-resistant katG mutant and translated to clinical isolates. This work highlights how changes in the physiology of drug-resistant strains generates druggable vulnerabilities that can be exploited to improve clinical outcomes.
Collapse
Affiliation(s)
- XinYue Wang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlan J Smart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Hannah R Klaus
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Noon Ej Seeto
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Natalie Je Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Michael T Chrisp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Amanda L Peterson
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Boatema Ofori-Anyinam
- Center for Emerging and Re-emerging Pathogens, Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Emily Strong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jason H Yang
- Center for Emerging and Re-emerging Pathogens, Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Simwela NV, Johnston L, Bitar PP, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth. Nat Commun 2024; 15:9322. [PMID: 39472457 PMCID: PMC11522665 DOI: 10.1038/s41467-024-53637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The eukaryotic Glucose Induced Degradation/C-Terminal to LisH (GID/CTLH) complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host anti-microbial defenses has not been described. We exploited Mycobacterium tuberculosis (Mtb) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 (GID8, YPEL5, WDR26, UBE2H, MAEA) of the 12 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the anti-microbial properties of the GID/CTLH complex knockout macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to Mtb induced necrotic cell death. Meanwhile, Mtb isolated from GID/CTLH knockout macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host anti-microbial responses against intracellular bacterial infections.
Collapse
Affiliation(s)
- Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luana Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paulina Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Simwela NV, Jaecklein E, Sassetti CM, Russell DG. Impaired fatty acid import or catabolism in macrophages restricts intracellular growth of Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604660. [PMID: 39091727 PMCID: PMC11291043 DOI: 10.1101/2024.07.22.604660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria's ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyzes demonstrate that mutated macrophages that cannot either import, store or catabolize fatty acids restrict Mtb growth by both common and divergent anti-microbial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Eleni Jaecklein
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Bhargavi G, Mallakuntla MK, Kale D, Tiwari S. Rv0687 a Putative Short-Chain Dehydrogenase Is Required for In Vitro and In Vivo Survival of Mycobacterium tuberculosis. Int J Mol Sci 2024; 25:7862. [PMID: 39063103 PMCID: PMC11277061 DOI: 10.3390/ijms25147862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), a successful human pathogen, resides in host sentinel cells and combats the stressful intracellular environment induced by reactive oxygen and nitrogen species during infection. Mtb employs several evasion mechanisms in the face of the host as a survival strategy, including detoxifying enzymes as short-chain dehydrogenases/reductases (SDRs) to withstand host-generated insults. In this study, using specialized transduction, we have generated a Rv0687 deletion mutant and its complemented strain and investigated the functional role of Rv0687, a member of SDRs family genes in Mtb pathogenesis. A wildtype (WT) and a mutant Mtb strain lacking Rv0687 (RvΔ0687) were tested for the in vitro stress response and in vivo survival in macrophages and mice models of infection. The study demonstrates that the deletion of Rv0687 elevated the sensitivity of Mtb to oxidative and nitrosative stress-inducing agents. Furthermore, the lack of Rv0687 compromised the survival of Mtb in primary bone marrow macrophages and led to an increase in the levels of the secreted proinflammatory cytokines TNF-α and MIP-1α. Interestingly, the growth of WT and RvΔ0687 was similar in the lungs of infected immunocompromised mice; however, a significant reduction in RvΔ0687 growth was observed in the spleen of immunocompromised Rag-/- mice at 4 weeks post-infection. Moreover, Rag-/- mice infected with RvΔ0687 survived longer compared to those infected with the WT Mtb strain. Additionally, we observed a significant reduction in the bacterial burden in the spleens and lungs of immunocompetent C57BL/6 mice infected with RvΔ0687 compared to those infected with complemented and WT Mtb strains. Collectively, this study reveals that Rv0687 plays a role in Mtb pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
5
|
Helaine S, Conlon BP, Davis KM, Russell DG. Host stress drives tolerance and persistence: The bane of anti-microbial therapeutics. Cell Host Microbe 2024; 32:852-862. [PMID: 38870901 PMCID: PMC11446042 DOI: 10.1016/j.chom.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance, typically associated with genetic changes within a bacterial population, is a frequent contributor to antibiotic treatment failures. Antibiotic persistence and tolerance, which we collectively term recalcitrance, represent transient phenotypic changes in the bacterial population that prolong survival in the presence of typically lethal concentrations of antibiotics. Antibiotic recalcitrance is challenging to detect and investigate-traditionally studied under in vitro conditions, our understanding during infection and its contribution to antibiotic failure is limited. Recently, significant progress has been made in the study of antibiotic-recalcitrant populations in pathogenic species, including Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica, and Yersiniae, in the context of the host environment. Despite the diversity of these pathogens and infection models, shared signals and responses promote recalcitrance, and common features and vulnerabilities of persisters and tolerant bacteria have emerged. These will be discussed here, along with progress toward developing therapeutic interventions to better treat recalcitrant pathogens.
Collapse
Affiliation(s)
- Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Simwela NV, Johnston L, Pavinski Bitar P, Jaecklein E, Altier C, Sassetti CM, Russell DG. Genome-wide screen of Mycobacterium tuberculosis- infected macrophages identified the GID/CTLH complex as a determinant of intracellular bacterial growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592714. [PMID: 38766174 PMCID: PMC11100626 DOI: 10.1101/2024.05.06.592714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The eukaryotic GID/CTLH complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host antimicrobial defenses has not been described. We exploited Mycobacterium tuberculosis ( Mtb ) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 ( GID8 , YPEL5 , WDR26 , UBE2H , MAEA ) of the 10 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the antimicrobial properties of the GID/CTLH complex knockdown macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to cell death. Meanwhile, Mtb isolated from GID/CTLH knockdown macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host antimicrobial responses against intracellular bacterial infections. Graphical abstract
Collapse
|
7
|
Hu T, Yang X, Zhu Y, Liu F, Yang X, Xiong Z, Liang J, Lin Z, Ran Y, Guddat LW, Rao Z, Zhang B. Molecular basis for substrate transport of Mycobacterium tuberculosis ABC importer DppABCD. SCIENCE ADVANCES 2024; 10:eadk8521. [PMID: 38507491 PMCID: PMC10954201 DOI: 10.1126/sciadv.adk8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The type I adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter DppABCD is believed to be responsible for the import of exogenous heme as an iron source into the cytoplasm of the human pathogen Mycobacterium tuberculosis (Mtb). Additionally, this system is also known to be involved in the acquisition of tri- or tetra-peptides. Here, we report the cryo-electron microscopy structures of the dual-function Mtb DppABCD transporter in three forms, namely, the apo, substrate-bound, and ATP-bound states. The apo structure reveals an unexpected and previously uncharacterized assembly mode for ABC importers, where the lipoprotein DppA, a cluster C substrate-binding protein (SBP), stands upright on the translocator DppBCD primarily through its hinge region and N-lobe. These structural data, along with biochemical studies, reveal the assembly of DppABCD complex and the detailed mechanism of DppABCD-mediated transport. Together, these findings provide a molecular roadmap for understanding the transport mechanism of a cluster C SBP and its translocator.
Collapse
Affiliation(s)
- Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaolin Yang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Yuanchen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Zhenli Lin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuting Ran
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
8
|
Wang S, Fang R, Wang H, Li X, Xing J, Li Z, Song N. The role of transcriptional regulators in metal ion homeostasis of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1360880. [PMID: 38529472 PMCID: PMC10961391 DOI: 10.3389/fcimb.2024.1360880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.
Collapse
Affiliation(s)
- Shuxian Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- Drug Innovation Research Center, SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
9
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid metabolism regulator. PLoS Genet 2024; 20:e1011143. [PMID: 38266039 PMCID: PMC10843139 DOI: 10.1371/journal.pgen.1011143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Successful colonization of the host requires Mycobacterium tuberculosis (Mtb) to sense and respond coordinately to disparate environmental cues during infection and adapt its physiology. However, how Mtb response to environmental cues and the availability of key carbon sources may be integrated is poorly understood. Here, by exploiting a reporter-based genetic screen, we have unexpectedly found that overexpression of transcription factors involved in Mtb lipid metabolism altered the dampening effect of low environmental potassium concentrations ([K+]) on the pH response of Mtb. Cholesterol is a major carbon source for Mtb during infection, and transcriptional analyses revealed that Mtb response to acidic pH was augmented in the presence of cholesterol and vice versa. Strikingly, deletion of the putative lipid regulator mce3R had little effect on Mtb transcriptional response to acidic pH or cholesterol individually, but resulted specifically in loss of cholesterol response augmentation in the simultaneous presence of acidic pH. Similarly, while mce3R deletion had little effect on Mtb response to low environmental [K+] alone, augmentation of the low [K+] response by the simultaneous presence of cholesterol was lost in the mutant. Finally, a mce3R deletion mutant was attenuated for growth in foamy macrophages and for colonization in a murine infection model that recapitulates caseous necrotic lesions and the presence of foamy macrophages. These findings reveal the critical coordination between Mtb response to environmental cues and cholesterol, a vital carbon source, and establishes Mce3R as a transcription factor that crucially serves to integrate these signals.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Current affiliation: Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Bhargavi G, Mallakuntla MK, Kale D, Tiwari S. Rv0687 a Putative Short-Chain Dehydrogenase is indispensable for pathogenesis of Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571312. [PMID: 38168250 PMCID: PMC10760034 DOI: 10.1101/2023.12.12.571312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mycobacterium tuberculosis (Mtb), a successful human pathogen, resides in host sentinel cells and combats the stressful intracellular environment induced by reactive oxygen and nitrogen species during infection. Mtb employs several evasion mechanisms in the face of the host as a survival strategy, including detoxifying enzymes as short-chain dehydrogenases/ reductases (SDRs) to withstand host-generated insults. In this study, using specialized transduction we have generated a Rv0687 deletion mutant and its complemented strain and investigated the functional role of Rv0687, a member of SDRs family genes in Mtb pathogenesis. Wildtype (WT) and mutant Mtb strain lacking Rv0687 (RvΔ0687) were tested for in-vitro stress response and in-vivo survival in macrophages and mice models of infection. The study demonstrates that Rv0687 is crucial for sustaining bacterial growth in nutrition-limited conditions. The deletion of Rv0687 elevated the sensitivity of Mtb to oxidative and nitrosative stress-inducing agents. Furthermore, the lack of Rv0687 compromised the survival of Mtb in primary bone marrow macrophages and led to an increase in the levels of the secreted proinflammatory cytokines TNF-α, and MIP-1α. Interestingly, the growth of WT and RvΔ0687 was similar in the lungs of infected immunocompromised mice however, a significant reduction in RvΔ0687 growth was observed in the spleen of immunocompromised Rag -/- mice at 4 weeks post-infection. Moreover Rag -/- mice infected with RvΔ0687 survived longer compared to WT Mtb strain. Additionally, we observed significant reduction in bacterial burden in spleens and lungs of immunocompetent C57BL/6 mice infected with RvΔ0687 compared to complemented and WT Mtb strains. Collectively, this study reveals that Rv0687 plays a role in Mtb pathogenesis.
Collapse
|
11
|
Shleider Carnero Canales C, Marquez Cazorla J, Furtado Torres AH, Monteiro Filardi ET, Di Filippo LD, Costa PI, Roque-Borda CA, Pavan FR. Advances in Diagnostics and Drug Discovery against Resistant and Latent Tuberculosis Infection. Pharmaceutics 2023; 15:2409. [PMID: 37896169 PMCID: PMC10610444 DOI: 10.3390/pharmaceutics15102409] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a subclinical, asymptomatic mycobacterial state affecting approximately 25% of the global population. The substantial prevalence of LTBI, combined with the risk of progressing to active tuberculosis, underscores its central role in the increasing incidence of tuberculosis (TB). Accurate identification and timely treatment are vital to contain and reduce the spread of the disease, forming a critical component of the global strategy known as "End TB." This review aims to examine and highlight the most recent scientific evidence related to new diagnostic approaches and emerging therapeutic treatments for LTBI. While prevalent diagnostic methods include the tuberculin skin test (TST) and interferon gamma release assay (IGRA), WHO's approval of two specific IGRAs for Mycobacterium tuberculosis (MTB) marked a significant advancement. However, the need for a specific test with global application viability has propelled research into diagnostic tests based on molecular diagnostics, pulmonary immunity, epigenetics, metabolomics, and a current focus on next-generation MTB antigen-based skin test (TBST). It is within these emerging methods that the potential for accurate distinction between LTBI and active TB has been demonstrated. Therapeutically, in addition to traditional first-line therapies, anti-LTBI drugs, anti-resistant TB drugs, and innovative candidates in preclinical and clinical stages are being explored. Although the advancements are promising, it is crucial to recognize that further research and clinical evidence are needed to solidify the effectiveness and safety of these new approaches, in addition to ensuring access to new drugs and diagnostic methods across all health centers. The fight against TB is evolving with the development of more precise diagnostic tools that differentiate the various stages of the infection and with more effective and targeted treatments. Once consolidated, current advancements have the potential to transform the prevention and treatment landscape of TB, reinforcing the global mission to eradicate this disease.
Collapse
Affiliation(s)
- Christian Shleider Carnero Canales
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | - Jessica Marquez Cazorla
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | | | | | | | - Paulo Inácio Costa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| | - Cesar Augusto Roque-Borda
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| |
Collapse
|
12
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid utilization regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554309. [PMID: 37662244 PMCID: PMC10473576 DOI: 10.1101/2023.08.22.554309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
How bacterial response to environmental cues and nutritional sources may be integrated in enabling host colonization is poorly understood. Exploiting a reporter-based screen, we discovered that overexpression of Mycobacterium tuberculosis (Mtb) lipid utilization regulators altered Mtb acidic pH response dampening by low environmental potassium (K+). Transcriptional analyses unveiled amplification of Mtb response to acidic pH in the presence of cholesterol, a major carbon source for Mtb during infection, and vice versa. Strikingly, deletion of the putative lipid regulator mce3R resulted in loss of augmentation of (i) cholesterol response at acidic pH, and (ii) low [K+] response by cholesterol, with minimal effect on Mtb response to each signal individually. Finally, the ∆mce3R mutant was attenuated for colonization in a murine model that recapitulates lesions with lipid-rich foamy macrophages. These findings reveal critical coordination between bacterial response to environmental and nutritional cues, and establish Mce3R as a crucial integrator of this process.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
13
|
Chen Y, Quirk NF, Tan S. Shining a light on bacterial environmental cue integration and its relation to metabolism. Mol Microbiol 2023; 120:71-74. [PMID: 37433048 PMCID: PMC10348474 DOI: 10.1111/mmi.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 07/13/2023]
Abstract
The ability of a bacterium to successfully colonize its host is dependent on proper adaptation to its local environment. Environmental cues are diverse in nature, ranging from ions to bacterial-produced signals, and to host immune responses that can also be exploited by the bacteria as cues. Simultaneously, bacterial metabolism must be matched to the carbon and nitrogen sources available at a given time and location. While initial characterization of a bacterium's response to a given environmental cue or its ability to utilize a particular carbon/nitrogen source requires study of the signal in question in isolation, actual infection poses a situation where multiple signals are present concurrently. This perspective focuses on the untapped potential in uncovering and understanding how bacteria integrate their response to multiple concurrent environmental cues, and in elucidating the possible intrinsic coordination of bacterial environmental response with its metabolism.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Natalia F. Quirk
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Veyron-Churlet R, Lecher S, Lacoste AS, Saliou JM, Locht C. Proximity-dependent biotin identification links cholesterol catabolism with branched-chain amino acid degradation in Mycobacterium smegmatis. FASEB J 2023; 37:e23036. [PMID: 37331005 DOI: 10.1096/fj.202202018rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Cholesterol is a crucial component in Mycobacterium tuberculosis virulence as it is required for phagocytosis of mycobacteria by macrophages. In addition, the tubercle bacilli can grow using cholesterol as the sole carbon source. Thus, cholesterol catabolism represents a valuable target for the development of new antitubercular drugs. However, the molecular partners of cholesterol catabolism remain elusive in mycobacteria. Here, we focused on HsaC and HsaD, enzymes involved in two consecutive steps of cholesterol ring degradation and identified putative partners, using a BirA-based proximity-dependent biotin identification (BioID) approach in Mycobacterium smegmatis. In rich medium, the fusion protein BirA-HsaD was able to fish the endogenous cognate HsaC, thus validating this approach to study protein-protein interactions and to infer metabolic channeling of cholesterol ring degradation. In chemically defined medium, both HsaC and HsaD interacted with four proteins, BkdA, BkdB, BkdC, and MSMEG_1634. BkdA, BkdB, and BkdC are enzymes that participate in the degradation of branched-chain amino acids. As cholesterol and branched-chain amino acid catabolism both generate propionyl-CoA, which is a toxic metabolite for mycobacteria, this interconnection suggests a compartmentalization to avoid dissemination of propionyl-CoA into the mycobacterial cytosol. Moreover, the BioID approach allowed us to decipher the interactome of MSMEG_1634 and MSMEG_6518, two proteins of unknown function, which are proximal to the enzymes involved in cholesterol and branched-chain amino acid catabolism. In conclusion, BioID is a powerful tool to characterize protein-protein interactions and to decipher the interconnections between different metabolic pathways, thereby facilitating the identification of new mycobacterial targets.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Sophie Lecher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Anne-Sophie Lacoste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, F-59000, Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, F-59000, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|
15
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
16
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|