1
|
Wang D, Wan Y, Liu D, Wang N, Wu J, Gu Q, Wu H, Gao X, Wang Y. Immune-enriched phyllosphere microbiome in rice panicle exhibits protective effects against rice blast and rice false smut diseases. IMETA 2024; 3:e223. [PMID: 39135691 PMCID: PMC11316918 DOI: 10.1002/imt2.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
Activation of immune responses leads to an enrichment of beneficial microbes in rice panicle. We therefore selected the enriched operational taxonomy units (OTUs) exhibiting direct suppression effects on fungal pathogens, and established a simplified synthetic community (SynCom) which consists of three beneficial microbes. Application of this SynCom exhibits protective effect against fungal pathogen infection in rice.
Collapse
Affiliation(s)
- Dacheng Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Yingqiao Wan
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Dekun Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Ning Wang
- Research Center for Functional MicrobiologyOrganic Recycling Research Institute (Suzhou) of China Agricultural UniversitySuzhouChina
| | - Jingni Wu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Qin Gu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Huijun Wu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Xuewen Gao
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
2
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
3
|
Jibril SM, Yan W, Wang Y, Zhu X, Yunying Z, Wu J, Wang L, Zhang L, Li C. Highly diverse microbial community of regenerated seedlings reveals the high capacity of the bulb in lily, Lilium brownii. Front Microbiol 2024; 15:1387870. [PMID: 38903799 PMCID: PMC11188333 DOI: 10.3389/fmicb.2024.1387870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Lily bulbs, which have both nutrient storage and reproductive functions, are a representative group of plants for studying the maintenance and transfer of plant-associated microbiomes. In this study, a comparison of the microbial composition of bulbs and their regenerated seedlings cultured under aseptic conditions, as well as subcultured seedlings that succeeded five times, was examined by amplicon sequencing. A total of 62 bacterial taxa and 56 fungal taxa were found to be transferred to the 5th generation in seedlings, which are the core microbiome of lily. After the regeneration of seedlings from bulbs, there was a significant increase in the number of detectable microbial species, and after 1, 3, and 5 successive generations, there was a decrease in the number of detectable species. Interestingly, some "new" microorganisms appeared in each generation of samples; for instance, 167 and 168 bacterial operational taxonomic units (OTUs) in the 3rd and 5th generations of seedlings that were not detected in either bulbs or seedlings of the previous two generations. These results suggest that bulbs can maintain a high diversity of microorganisms, including some with ultra-low abundance, and have a high transfer capacity to tuck shoots through continuous subculture. The diversity and maintenance of the microbiome can provide the necessary microbial reservoir support for regenerating seedlings. This habit of maintaining low abundance and high diversity may be biologically and ecologically critical for maintaining microbiome stability and function due to the sequestration nature of the plant.
Collapse
Affiliation(s)
- Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Wu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Xishen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Zhou Yunying
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Jie Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Ling Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Limin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Davies J, Hawkins S, Winters A, Farrar K. Bacterial endophytic community composition varies by hemp cultivar in commercially sourced seed. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13259. [PMID: 38649235 PMCID: PMC11035101 DOI: 10.1111/1758-2229.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.
Collapse
Affiliation(s)
- Jack Davies
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Sarah Hawkins
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Ana Winters
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
5
|
Yao Y, Liu C, Zhang Y, Lin Y, Chen T, Xie J, Chang H, Fu Y, Cheng J, Li B, Yu X, Lyu X, Feng Y, Bian X, Jiang D. The Dynamic Changes of Brassica napus Seed Microbiota across the Entire Seed Life in the Field. PLANTS (BASEL, SWITZERLAND) 2024; 13:912. [PMID: 38592934 PMCID: PMC10975644 DOI: 10.3390/plants13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The seed microbiota is an important component given by nature to plants, protecting seeds from damage by other organisms and abiotic stress. However, little is known about the dynamic changes and potential functions of the seed microbiota during seed development. In this study, we investigated the composition and potential functions of the seed microbiota of rapeseed (Brassica napus). A total of 2496 amplicon sequence variants (ASVs) belonging to 504 genera in 25 phyla were identified, and the seed microbiota of all sampling stages were divided into three groups. The microbiota of flower buds, young pods, and seeds at 20 days after flowering (daf) formed the first group; that of seeds at 30 daf, 40 daf and 50 daf formed the second group; that of mature seeds and parental seeds were clustered into the third group. The functions of seed microbiota were identified by using PICRUSt2, and it was found that the substance metabolism of seed microbiota was correlated with those of the seeds. Finally, sixty-one core ASVs, including several potential human pathogens, were identified, and a member of the seed core microbiota, Sphingomonas endophytica, was isolated from seeds and found to promote seedling growth and enhance resistance against Sclerotinia sclerotiorum, a major pathogen in rapeseed. Our findings provide a novel perspective for understanding the composition and functions of microbiota during seed development and may enhance the efficiency of mining beneficial seed microbes.
Collapse
Affiliation(s)
- Yao Yao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Changxing Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Haibin Chang
- Huanggang Academy of Agricultural Science, Huanggang 438000, China;
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanbo Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuefeng Bian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
6
|
Guo J, Ning H, Li Y, Xu Q, Shen Q, Ling N, Guo S. Assemblages of rhizospheric and root endospheric mycobiota and their ecological associations with functional traits of rice. mBio 2024; 15:e0273323. [PMID: 38319112 PMCID: PMC10936437 DOI: 10.1128/mbio.02733-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
The soil-root interface harbors complex fungal communities that play vital roles in the fitness of host plants. However, little is known about the assembly rules and potential functions of rhizospheric and endospheric mycobiota. A greenhouse experiment was conducted to explore the fungal communities inhabiting the rhizosphere and roots of 87 rice cultivars at the tillering stage via amplicon sequencing of the fungal internal transcribed spacer 1 region. The potential relationships between these communities and host plant functional traits were also investigated using Procrustes analysis, generalized additive model fitting, and correlation analysis. The fungal microbiota exhibited greater richness, higher diversity, and lower structural variability in the rhizosphere than in the root endosphere. Compared with the root endosphere, the rhizosphere supported a larger coabundance network, with greater connectivity and stronger cohesion. Null model-based analyses revealed that dispersal limitation was primarily responsible for rhizosphere fungal community assembly, while ecological drift was the dominant process in the root endosphere. The community composition of fungi in the rhizosphere was shown to be more related to plant functional traits, such as the root/whole plant biomass, root:shoot biomass ratio, root/shoot nitrogen (N) content, and root/shoot/whole plant N accumulation, than to that in the root endosphere. Overall, at the early stage of rice growth, diverse and complex rhizospheric fungal communities are shaped by stochastic-based processes and exhibit stronger associations with plant functional traits. IMPORTANCE The assembly processes and functions of root-associated mycobiota are among the most fascinating yet elusive topics in microbial ecology. Our results revealed that stochastic forces (dispersal limitation or ecological drift) act on fungal community assembly in both the rice rhizosphere and root endosphere at the early stage of plant growth. In addition, high covariations between the rhizosphere fungal community compositions and plant functional trait profiles were clearly demonstrated in the present study. This work provides empirical evidence of the root-associated fungal assembly principles and ecological relationships of plant functional traits with rhizospheric and root endospheric mycobiota, thereby potentially providing novel perspectives for enhancing plant performance.
Collapse
Affiliation(s)
- Junjie Guo
- State Key Lab of Biocontrol, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Huiling Ning
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qicheng Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Arnault G, Marais C, Préveaux A, Briand M, Poisson AS, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiol Ecol 2024; 100:fiae027. [PMID: 38503562 PMCID: PMC10977042 DOI: 10.1093/femsec/fiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne-Sophie Poisson
- Groupe d’Étude et de Contrôle des Variétés et des Semences (GEVES), 49070, Beaucouzé, France
| | - Alain Sarniguet
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Matthieu Barret
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie Simonin
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
8
|
Ju M, Zhang Q, Wang R, Yan S, Zhang Q, Li P, Hao F, Gu P. Community ecological succession of endophytic fungi associates with medicinal compound accumulation in Sophora alopecuroides. Microbiol Spectr 2024; 12:e0307623. [PMID: 38236025 PMCID: PMC10845968 DOI: 10.1128/spectrum.03076-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Endophytic fungi of medicinal plants are symbiotic with the host and play an important role in determining metabolites. To understand the relationship between the accumulation of Sophora alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi, here we collected samples from S. alopecuroides at four developmental stages (adult, flowering, podding, and mature) and different organs (roots, stems, leaves, and seeds) at the mature stage. We then used high-performance liquid chromatography-mass spectrometry and high-throughput sequencing on the internal transcribed spacer region to identify the medicinal compounds and endophytic fungal communities in each sample. The endophytic fungal community characteristics and accumulation of medicinally bioactive compounds of S. alopecuroides varied with the host's developmental stages and organs, with the highest total alkaloids content of 111.9 mg/g at the mature stage. Membership analysis and network connection analysis showed a total of 15 core endophytic fungi in different developmental stages and 16 core endophytic fungi in different organs at the mature stage. The unclassified Ascomycota, Aspergillus, and Alternaria were significantly and positively correlated with the medicinal compounds of S. alopecuroides at the mature stage (r > 0.6 or r < -0.6; P < 0.05). In this study, we identified key endophytic fungal resources that affect the content of medicinally bioactive compounds in S. alopecuroides. This discovery could lay the foundation for enhancing the yield of medicinally bioactive compounds in S. alopecuroides and the development and application of functional endophytic fungi.IMPORTANCESophora alopecuroides is a traditional Chinese herbal medicine. The major medicinal chemicals are considered to be quinolizidine alkaloids. Quinolizidine alkaloids have been widely used for the treatment of tumors, dysentery, and enteritis. Previous studies have found that endophytic fungi in S. alopecuroides can promote the accumulation of host quinolizidine alkaloids. However, the relationship between the accumulation of S. alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi remains unclear. In this study, we screened the key endophytic fungal resources affecting the content of medicinally bioactive compounds and laid the foundation for subsequent research on the mechanism by which endophytic fungi promote the accumulation of medicinally bioactive compounds in S. alopecuroides.
Collapse
Affiliation(s)
- Mingxiu Ju
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Ruotong Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Siyuan Yan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Qiangqiang Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Peng Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, China
| | - Fengxia Hao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, China
| | - Peiwen Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
9
|
Zhou H, Jia S, Gao Y, Li X, Lin Y, Yang F, Ni K. Characterization of phyllosphere endophytic lactic acid bacteria reveals a potential novel route to enhance silage fermentation quality. Commun Biol 2024; 7:117. [PMID: 38253824 PMCID: PMC10803313 DOI: 10.1038/s42003-024-05816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The naturally attached phyllosphere microbiota play a crucial role in plant-derived fermentation, but the structure and function of phyllosphere endophytes remain largely unidentified. Here, we reveal the diversity, specificity, and functionality of phyllosphere endophytes in alfalfa (Medicago sativa L.) through combining typical microbial culture, high-throughput sequencing, and genomic comparative analysis. In comparison to phyllosphere bacteria (PB), the fermentation of alfalfa solely with endophytes (EN) enhances the fermentation characteristics, primarily due to the dominance of specific lactic acid bacteria (LAB) such as Lactiplantibacillus, Weissella, and Pediococcus. The inoculant with selected endophytic LAB strains also enhances the fermentation quality compared to epiphytic LAB treatment. Especially, one key endophytic LAB named Pediococcus pentosaceus EN5 shows enrichment of genes related to the mannose phosphotransferase system (Man-PTS) and carbohydrate-metabolizing enzymes and higher utilization of carbohydrates. Representing phyllosphere, endophytic LAB shows great potential of promoting ensiling and provides a novel direction for developing microbial inoculant.
Collapse
Affiliation(s)
- Hongzhang Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Khalaf EM, Shrestha A, Reid M, McFadyen BJ, Raizada MN. Conservation and diversity of the pollen microbiome of Pan-American maize using PacBio and MiSeq. Front Microbiol 2023; 14:1276241. [PMID: 38179444 PMCID: PMC10764481 DOI: 10.3389/fmicb.2023.1276241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
Pollen is a vector for diversification, fitness-selection, and transmission of plant genetic material. The extent to which the pollen microbiome may contribute to host diversification is largely unknown, because pollen microbiome diversity within a plant species has not been reported, and studies have been limited to conventional short-read 16S rRNA gene sequencing (e.g., V4-MiSeq) which suffers from poor taxonomic resolution. Here we report the pollen microbiomes of 16 primitive and traditional accessions of maize (corn) selected by indigenous peoples across the Americas, along with the modern U.S. inbred B73. The maize pollen microbiome has not previously been reported. The pollen microbiomes were identified using full-length (FL) 16S rRNA gene PacBio SMRT sequencing compared to V4-MiSeq. The Pan-American maize pollen microbiome encompasses 765 taxa spanning 39 genera and 46 species, including known plant growth promoters, insect-obligates, plant pathogens, nitrogen-fixers and biocontrol agents. Eleven genera and 13 species composed the core microbiome. Of 765 taxa, 63% belonged to only four genera: 28% were Pantoea, 15% were Lactococcus, 11% were Pseudomonas, and 10% were Erwinia. Interestingly, of the 215 Pantoea taxa, 180 belonged to a single species, P. ananatis. Surprisingly, the diversity within P. ananatis ranged nearly 10-fold amongst the maize accessions analyzed (those with ≥3 replicates), despite being grown in a common field. The highest diversity within P. ananatis occurred in accessions that originated near the center of diversity of domesticated maize, with reduced diversity associated with the north-south migration of maize. This sub-species diversity was revealed by FL-PacBio but missed by V4-MiSeq. V4-MiSeq also mis-identified some dominant genera captured by FL-PacBio. The study, though limited to a single season and common field, provides initial evidence that pollen microbiomes reflect evolutionary and migratory relationships of their host plants.
Collapse
Affiliation(s)
- Eman M. Khalaf
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Michelle Reid
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Li XY, Wu WF, Wu CY, Hu Y, Xiang Q, Li G, Lin XY, Zhu YG. Seeds Act as Vectors for Antibiotic Resistance Gene Dissemination in a Soil-Plant Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21358-21369. [PMID: 38078407 DOI: 10.1021/acs.est.3c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Though the evidence for antibiotic resistance spread via plant microbiome is mounting, studies regarding antibiotic resistome in the plant seed, a reproductive organ and important food resource, are still in their infancy. This study investigated the effects of long-term organic fertilization on seed bacterial endophytes, resistome, and their intergenerational transfer in the microcosm. A total of 99 antibiotic resistance genes (ARGs) and 26 mobile genetic elements (MGEs) were detected by high-throughput quantitative PCR. The amount of organic fertilizer applied was positively correlated to the number and relative abundance of seed-associated ARGs and MGEs. Moreover, the transmission of ARGs from the rhizosphere to the seed was mainly mediated by the shared bacteria and MGEs. Notably, the rhizosphere of progeny seedlings derived from seeds harboring abundant ARGs was found to have a higher relative abundance of ARGs. Using structural equation models, we further revealed that seed resistome and MGEs were key factors affecting the ARGs in the progeny rhizosphere, implying the seed was a potential resistome reservoir for rhizosphere soil. This study highlights the overlooked role of seed endophytes in the dissemination of resistome in the soil-plant continuum, and more attention should be paid to plant seeds as vectors of ARGs within the "One-Health" framework.
Collapse
Affiliation(s)
- Xin-Yuan Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei-Feng Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chun-Yan Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xian-Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yong-Guan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Zeng Q, Zhao Y, Shen W, Han D, Yang M. Seed-to-Seed: Plant Core Vertically Transmitted Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19255-19264. [PMID: 38044571 DOI: 10.1021/acs.jafc.3c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The plant core microbiota transmitted by seeds have been demonstrated to exist in seeds and adult plants of several crops for multiple generations. They are closely related to plants and are relatively conserved throughout evolution, domestication, and breeding. These microbiota play a vital role in the early stages of plant growth. However, information about their colonization routes, transmission pathways, and final fate remains fragmentary. This review delves into the concept of these microbiota, their colonization sources, transmission pathways, and how they change throughout plant evolution, domestication, and breeding, as well as their effects on plants, based on relevant literature. Finally, the significant potential of incorporating the practical application of seed-transmitted microbiota into plant microbial breeding is emphasized.
Collapse
Affiliation(s)
- Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Shen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dejun Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Sun Z, Adeleke BS, Shi Y, Li C. The seed microbiomes of staple food crops. Microb Biotechnol 2023; 16:2236-2249. [PMID: 37815330 PMCID: PMC10686132 DOI: 10.1111/1751-7915.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
The scientific community increasingly recognized that seed microbiomes are important for plant growth and nutrition. The versatile roles and modulating properties that microbiomes hold in the context of seeds seem to be an inherited approach to avert adverse conditions. These discoveries attracted extensive interest, especially in staple food crops (SFCs) where grain was consumed as food. Along with the rapid expansion of population and industrialization that posed a severe challenge to the yield of SFCs, microbiologists and botanists began to explore and engineer seed microbiomes, for safer and more fruitful grain production. To utilize seed microbiomes, we present an overall review of the most updated scientific literature on three representative SFCs (wheat, rice and maize) using the 5W1H (Which, Where, What, Why, When and How) method that provides a comprehensive understanding of the issue. These include which factors determine the composition of seed microbiomes? Where do seed microbiomes come from? What are these seed microbes? Why do these microbes choose seeds as their destination and when do microbes settle down and become seed communists? In addition, how do seed microbiomes work and can be manipulated effectively? Therefore, answering the aforementioned questions regarding SFCs seed microbiomes remain fundamental in bridging endophytic research gaps and harnessing their ecological services.
Collapse
Affiliation(s)
- Zhongke Sun
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Food Laboratory of ZhongyuanLuoheChina
| | - Bartholomew Saanu Adeleke
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Department of Biological Sciences, School of ScienceOlusegun Agagu University of Science and TechnologyOkitipupaNigeria
| | - Yini Shi
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| | - Chengwei Li
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| |
Collapse
|
14
|
Singh P, Vaishnav A, Liu H, Xiong C, Singh HB, Singh BK. Seed biopriming for sustainable agriculture and ecosystem restoration. Microb Biotechnol 2023; 16:2212-2222. [PMID: 37490280 PMCID: PMC10686123 DOI: 10.1111/1751-7915.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
The utilization of microbial inoculants in the realm of sustainable agricultural and ecosystem restoration has witnessed a surge in recent decades. This rise is largely attributed to advancements in our understanding of plant-microbe interactions, the urgency to reduce the dependence on agrochemicals and the growing societal demand for sustainable strategies in ecosystem management. However, despite the rapid growth of bio-inoculants sector, certain limitations persist concerning their efficacy and performance under the field condition. Here, we propose that seed biopriming, an effective microbial inoculant technique integrating both biological agents (the priming of beneficial microbes on seeds) and physiological aspects (hydration of seeds for improved metabolically activity), has a significant potential to mitigate these limitations. This method increases the protection of seeds against soil-borne pathogens and soil pollutants, such as salts and heavy metals, while promoting germination rate and uniformity, leading to overall improved primary productivity and soil health. Furthermore, we argue that a microbial coating on seeds can facilitate transgenerational associations of beneficial microbes, refine plant and soil microbiomes, and maintain soil legacies of beneficial microflora. This review article aims to improve our understanding of the seed biopriming approach as a potent and valuable tool in achieving sustainable agriculture and successful ecosystem restoration.
Collapse
Affiliation(s)
- Prachi Singh
- Rabindranath Tagore Agriculture College, DeogharBirsa Agriculture UniversityRanchiJharkhandIndia
| | - Anukool Vaishnav
- Department of BiotechnologyGLA UniversityMathuraUttar PradeshIndia
| | - Hongwei Liu
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Chao Xiong
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | | | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
15
|
Wang Z, Li N, Wang W, Zhu Y, Liu Y. Endophytic bacterial community diversity in genetically related hybrid rice seeds. Appl Microbiol Biotechnol 2023; 107:6911-6922. [PMID: 37704771 DOI: 10.1007/s00253-023-12782-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
The Food and Agriculture Organization of the United Nations (FAO) has identified hybrid rice as ideal for addressing food scarcity in poor nations. A comprehensive investigation of the endophytic bacteria in hybrid rice seeds is essential from a microecological perspective to illuminate the mechanisms underlying its high yield, high quality, and multi-resistance. The endophytic bacterial diversity and community structures of 11 genetically correlated hybrid rice seeds with different rice blast resistance levels were studied using high-throughput sequencing (HTS) on the Illumina MiSeq platform to reveal their "core microbiota" and explore the effect of genotypes, genetic relationships, and resistance. Proteobacteria (78.15-99.15%) represented the most abundant group in the 11 hybrid rice cultivars, while Pantoea, Pseudomonas, and Microbacterium comprised the "core microbiota." Hybrid rice seeds with different genotypes, genetic correlations, and rice blast resistance displayed endophytic bacterial community structure and diversity variation. In addition, the network relationships between the rice seed endophytic bacteria of "the same female parent but different male parents" were more complex than those from "the same male parent but different female parents." Matrilineal inheritance may be the primary method of passing on endophytic bacteria in rice from generation to generation. The endophytic bacterial interaction network in rice blast-resistant hybrid rice seed varieties was more complicated than in susceptible varieties. In summary, this study demonstrated that the genotype, genetic relationship, and rice blast resistance were important factors affecting the community structures and diversity of endophytic bacteria in hybrid rice seeds, which was vital for revealing the interaction between endophytic bacteria and the host. KEY POINTS: • Pantoea, Pseudomonas, and Microbacterium represent the main endophytic bacteria in hybrid rice seeds. • Genotype is the primary factor affecting endophytic bacterial diversity in hybrid rice seeds. • The diversity of the endophytic bacterial community in hybrid rice seeds is related to their genotypes, genetic relationships, and rice blast resistance.
Collapse
Affiliation(s)
- Zhishan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha, 410125, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha, 410125, China.
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 201203, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
16
|
Wang YL, Zhang HB. Assembly and Function of Seed Endophytes in Response to Environmental Stress. J Microbiol Biotechnol 2023; 33:1119-1129. [PMID: 37311706 PMCID: PMC10580892 DOI: 10.4014/jmb.2303.03004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.
Collapse
Affiliation(s)
- Yong-Lan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
17
|
Escudero-Martinez C, Bulgarelli D. Engineering the Crop Microbiota Through Host Genetics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:257-277. [PMID: 37196364 DOI: 10.1146/annurev-phyto-021621-121447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The microbiota populating the plant-soil continuum defines an untapped resource for sustainable crop production. The host plant is a driver for the taxonomic composition and function of these microbial communities. In this review, we illustrate how the host genetic determinants of the microbiota have been shaped by plant domestication and crop diversification. We discuss how the heritable component of microbiota recruitment may represent, at least partially, a selection for microbial functions underpinning the growth, development, and health of their host plants and how the magnitude of this heritability is influenced by the environment. We illustrate how host-microbiota interactions can be treated as an external quantitative trait and review recent studies associating crop genetics with microbiota-based quantitative traits. We also explore the results of reductionist approaches, including synthetic microbial communities, to establish causal relationships between microbiota and plant phenotypes. Lastly, we propose strategies to integrate microbiota manipulation into crop selection programs. Although a detailed understanding of when and how heritability for microbiota composition can be deployed for breeding purposes is still lacking, we argue that advances in crop genomics are likely to accelerate wider applications of plant-microbiota interactions in agriculture.
Collapse
Affiliation(s)
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom; ,
| |
Collapse
|
18
|
Wang X, He SW, He Q, Ju ZC, Ma YN, Wang Z, Han JC, Zhang XX. Early inoculation of an endophyte alters the assembly of bacterial communities across rice plant growth stages. Microbiol Spectr 2023; 11:e0497822. [PMID: 37655928 PMCID: PMC10580921 DOI: 10.1128/spectrum.04978-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
The core endophytes of plants are regarded as promising resources in future agroecosystems. How they affect the assembly of rice-related bacterial communities after early inoculation remains unclear. Here, we examined bacterial communities across 148 samples, including bulk and rhizosphere soils, sterilized roots, stems, and seeds at the seedling, tillering, booting, and maturity stages. Tissue cultured rice seedlings were inoculated with Xathomonas sacchari JR3-14, a core endophytic bacterium of rice seeds, before transplanting. The results revealed that α-diversity indices were significantly enhanced in the root and stem endosphere at the seedling stage. β-diversity was altered at most plant developmental stages, except for the root and stem at the booting stage. Network complexity consequently increased in the root and stem across rice growth stages, other than the stem endosphere at the booting stage. Four abundant beneficial bacterial taxa, Bacillus, Azospira, Azospirillum, and Arthrobacter, were co-enriched during the early growth stage. Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model analysis revealed a higher relative contribution of drift and other eco-evolutionary processes mainly in root compartments across all growth stages, but the opposite pattern was observed in stem compartments. IMPORTANCE Endophytic bacteria are regarded as promising environmentally friendly resources to promote plant growth and plant health. Some of microbes from the seed are able to be carried over to next generation, and contribute to the plant's ability to adapt to new environments. However, the effects of early inoculation with core microbes on the assembly of the plant microbiome are still unclear. In our study, we demonstrate that early inoculation of the rice seed core endophytic bacterium Xanthomonas sacchari could alter community diversity, enhance complexity degree of network structure at most the growth stages, and enrich beneficial bacteria at the seedling stage of rice. We further analyzed the evolutionary processes caused by the early inoculation. Our results highlight the new possibilities for research and application of sustainable agriculture by considering the contribution of seed endophytes in crop production and breeding.
Collapse
Affiliation(s)
- Xing Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Wen He
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhi-Cheng Ju
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yi-Nan Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhe Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia-Cheng Han
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Liu Y, Chu G, Stirling E, Zhang H, Chen S, Xu C, Zhang X, Ge T, Wang D. Nitrogen fertilization modulates rice seed endophytic microbiomes and grain quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159181. [PMID: 36191720 DOI: 10.1016/j.scitotenv.2022.159181] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The intensive use of chemical fertilizer, particularly nitrogen (N) has resulted in not only markedly increased crop yields but also detrimental effects on ecosystems. Plant microbiomes represent an eco-friendly alternative for plant nutrition and productivity, and the effect of N fertilization on plant and soil microbes has been well studied. However, if and how N fertilization modulates seed endophytic microbiomes and grain quality remains largely unknown. Here, we investigated the effect of different N fertilization rates on rice seed endophytic bacterial and fungal communities as well as on grain quality. Higher bacterial and fungal community diversity and richness, but lower grain protein and amino acid contents were found in seeds of rice treated moderate N fertilization than those treated insufficient or excessive N input. There were also more complex co-occurrence networks, and an enrichment of putative beneficial bacterial taxa in seeds under moderate N application, while there was an opposite trend under the excessive N treatment. In addition, the grain amylose and amylopectin contents were positively correlated with the relative abundance of bacterial and fungal dominant genera, while the grain amino acid contents were negatively correlated with the bacterial dominant genera but positively associated with fungal dominant genera. Together, we demonstrate that moderate N fertilization can enhance bacterial and fungal community colonization in seeds and improve grain eating and cooking qualities. This study extends our knowledge regarding the significant role of rational fertilization on seed-microbe interactions in sustainable agriculture.
Collapse
Affiliation(s)
- Yuanhui Liu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, Zhejiang, China
| | - Guang Chu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, Zhejiang, China
| | - Erinne Stirling
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Adelaide 5064, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Haoqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Song Chen
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, Zhejiang, China
| | - Chunmei Xu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, Zhejiang, China
| | - Xiufu Zhang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, Zhejiang, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Danying Wang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|