Biewenga L, Vermathen R, Rosier BJ, Merkx M. A Generic Antibody-Blocking Protein That Enables pH-Switchable Activation of Antibody Activity.
ACS Chem Biol 2024;
19:48-57. [PMID:
38110237 PMCID:
PMC10804362 DOI:
10.1021/acschembio.3c00449]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Molecular strategies that allow for reversible control of antibody activity have drawn considerable interest for both therapeutic and diagnostic applications. Protein M is a generic antibody-binding protein that binds to the Fv domain of IgGs and, in doing so, blocks antigen binding. However, the dissociation of protein M is essentially irreversible, which has precluded its use as an antibody affinity reagent and molecular mask to control antibody activity. Here, we show that introduction of 8 histidine residues on the Fv binding interface of protein M results in a variant that shows pH-switchable IgG binding. This protein M-8his variant provides an attractive and universal affinity resin for the purification of IgGs, antibody fragments (Fab and single-chain variable fragments (scFv)), and antibody conjugates. Moreover, protein M-8his enables the pH-dependent blocking of therapeutic antibodies, allowing the selective targeting of cells at pH 6.0.
Collapse