1
|
González-Muñoz S, Long Y, Guzmán-Jiménez A, Cerván-Martín M, Higueras-Serrano I, Castilla JA, Clavero A, Garrido N, Luján S, Yang X, Guo X, Liu J, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Bossini-Castillo L, Palomino-Morales RJ, Wang C, Hu Z, Carmona FD. Trans-ethnic GWAS meta-analysis of idiopathic spermatogenic failure highlights the immune-mediated nature of Sertoli cell-only syndrome. Commun Biol 2025; 8:571. [PMID: 40188177 PMCID: PMC11972312 DOI: 10.1038/s42003-025-08001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Non-obstructive azoospermia, a severe form of male infertility caused by spermatogenic failure (SPGF), has a largely unknown genetic basis across ancestries. To our knowledge, this is the first trans-ethnic meta-analysis of genome-wide association studies on SPGF, involving 2255 men with idiopathic SPGF and 3608 controls from European and Asian populations. Using logistic regression and inverse variance methods, we identify two significant genetic associations with Sertoli cell-only (SCO) syndrome, the most extreme SPGF phenotype. The G allele of rs34915133, in the major histocompatibility complex class II region, significantly increases SCO risk (P = 5.25E-10, OR = 1.57), supporting a potential immune-related cause. Additionally, the rs10842262 variant in the SOX5 gene region is also a genetic marker of SCO (P = 5.29E-09, OR = 0.72), highlighting the key role of this gene in the male reproductive function. Our findings reveal shared genetic factors in male infertility across ancestries and provide insights into the molecular mechanisms underlying SCO.
Collapse
Affiliation(s)
- Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Yichen Long
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVIRMA Global Research Alliance. IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics - Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Immune-Inflammatory Processes and Gene Therapeutics Group, Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
2
|
Shelton DA, Papania JT, Getz TE, Sellers JT, Giradot PE, Chrenek MA, Grossniklaus HE, Boatright JH, Nickerson JM. Loss of Pigment Epithelium Derived Factor Sensitizes C57BL/6J Mice to Light-Induced Retinal Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626802. [PMID: 39679905 PMCID: PMC11643041 DOI: 10.1101/2024.12.04.626802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Purpose Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in PEDF are associated with increased inflammation and retinal degeneration in aging and diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-mediated inflammatory signaling. Methods C57BL/6J mice expressing the RPE65 M450/M450 allele were crossed to PEDF KO/KO and wildtype (PEDF +/+) littermates. Mice were exposed to 50,000 lux light for 5 hours to initiate acute damage. Changes in visual function outcomes were tracked via electroretinogram (ERG), confocal scanning laser ophthalmoscopy(cSLO), and spectral domain optical coherence tomography (SD-OCT) on days 3, 5, and 7 post-light exposure. Gene and protein expression of Galectin-3 were measured by digital drop PCR (ddPCR) and western blot. To further investigate the role of galectin-3 on visual outcomes and PEDF expression after damage, we also used a small-molecule inhibitor to reduce its activity. Results Following light damage, PEDF KO/KO mice showed more severe retinal thinning, impaired visual function (reduced a-, b-, and c-wave amplitudes), and increased Galectin-3 expressing immune cell infiltration compared to PEDF +/+. PEDF KO/KO mice had suppressed damage-associated increases in IGF-1 expression. Additionally, baseline Galectin-3 mRNA and protein expression were reduced in PEDF KO/KO mice compared to PEDF +/+. However, after light damage, Galectin-3 expression decreases in PEDF +/+ mice but increases in PEDF KO/KO mice without reaching PEDF +/+ levels. Galectin-3 inhibition worsens retinal degeneration, reduces PEDF expression in PEDF +/+ mice, and mimics the effects seen in PEDF knockouts. Conclusions Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF +/+. PEDF deficiency reduced baseline expression of Galectin-3, and pharmacological inhibition of Galectin-3 worsens outcomes and suppresses PEDF expression in PEDF +/+, suggesting a novel co-regulatory relationship between the two proteins in mitigating light-induced retinal damage.
Collapse
Affiliation(s)
- Debresha A. Shelton
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jack T. Papania
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Tatiana E. Getz
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Preston E. Giradot
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | | | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Garrido N, Castilla JA, Gonzalvo MC, Clavero A, Molina M, Luján S, Santos-Ribeiro S, Vilches MÁ, Espuch A, Maldonado V, Galiano-Gutiérrez N, Santamaría-López E, González-Ravina C, Quintana-Ferraz F, Gómez S, Amorós D, Martínez-Granados L, Ortega-González Y, Burgos M, Pereira-Caetano I, Bulbul O, Castellano S, Romano M, Albani E, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L. A comprehensive study of common and rare genetic variants in spermatogenesis-related loci identifies new risk factors for idiopathic severe spermatogenic failure. Hum Reprod Open 2024; 2024:hoae069. [PMID: 39678461 PMCID: PMC11645127 DOI: 10.1093/hropen/hoae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Indexed: 12/17/2024] Open
Abstract
STUDY QUESTION Can genome-wide genotyping data be analysed using a hypothesis-driven approach to enhance the understanding of the genetic basis of severe spermatogenic failure (SPGF) in male infertility? SUMMARY ANSWER Our findings revealed a significant association between SPGF and the SHOC1 gene and identified three novel genes (PCSK4, AP3B1, and DLK1) along with 32 potentially pathogenic rare variants in 30 genes that contribute to this condition. WHAT IS KNOWN ALREADY SPGF is a major cause of male infertility, often with an unknown aetiology. SPGF can be due to either multifactorial causes, including both common genetic variants in multiple genes and environmental factors, or highly damaging rare variants. Next-generation sequencing methods are useful for identifying rare mutations that explain monogenic forms of SPGF. Genome-wide association studies (GWASs) have become essential approaches for deciphering the intricate genetic landscape of complex diseases, offering a cost-effective and rapid means to genotype millions of genetic variants. Novel methods have demonstrated that GWAS datasets can be used to infer rare coding variants that are causal for male infertility phenotypes. However, this approach has not been previously applied to characterize the genetic component of a whole case-control cohort. STUDY DESIGN SIZE DURATION We employed a hypothesis-driven approach focusing on all genetic variation identified, using a GWAS platform and subsequent genotype imputation, encompassing over 20 million polymorphisms and a total of 1571 SPGF patients and 2431 controls. Both common (minor allele frequency, MAF > 0.01) and rare (MAF < 0.01) variants were investigated within a total of 1797 loci with a reported role in spermatogenesis. This gene panel was meticulously assembled through comprehensive searches in the literature and various databases focused on male infertility genetics. PARTICIPANTS/MATERIALS SETTING METHODS This study involved a European cohort using previously and newly generated data. Our analysis consisted of three independent methods: (i) variant-wise association analyses using logistic regression models, (ii) gene-wise association analyses using combined multivariate and collapsing burden tests, and (iii) identification and characterisation of highly damaging rare coding variants showing homozygosity only in SPGF patients. MAIN RESULTS AND THE ROLE OF CHANCE The variant-wise analyses revealed an association between SPGF and SHOC1-rs12347237 (P = 4.15E-06, odds ratio = 2.66), which was likely explained by an altered binding affinity of key transcription factors in regulatory regions and the disruptive effect of coding variants within the gene. Three additional genes (PCSK4, AP3B1, and DLK1) were identified as novel relevant players in human male infertility using the gene-wise burden test approach (P < 5.56E-04). Furthermore, we linked a total of 32 potentially pathogenic and recessive coding variants of the selected genes to 35 different cases. LARGE SCALE DATA Publicly available via GWAS catalog (accession number: GCST90239721). LIMITATIONS REASONS FOR CAUTION The analysis of low-frequency variants presents challenges in achieving sufficient statistical power to detect genetic associations. Consequently, independent studies with larger sample sizes are essential to replicate our results. Additionally, the specific roles of the identified variants in the pathogenic mechanisms of SPGF should be assessed through functional experiments. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the benefit of using GWAS genotyping to screen for both common and rare variants potentially implicated in idiopathic cases of SPGF, whether due to complex or monogenic causes. The discovery of novel genetic risk factors for SPGF and the elucidation of the underlying genetic causes provide new perspectives for personalized medicine and reproductive counselling. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Spanish Ministry of Science and Innovation through the Spanish National Plan for Scientific and Technical Research and Innovation (PID2020-120157RB-I00) and the Andalusian Government through the research projects of 'Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)' (ref. PY20_00212) and 'Proyectos de Investigación aplicada FEDER-UGR 2023' (ref. C-CTS-273-UGR23). S.G.-M. was funded by the previously mentioned projects (ref. PY20_00212 and PID2020-120157RB-I00). A.G.-J. was funded by MCIN/AEI/10.13039/501100011033 and FSE 'El FSE invierte en tu futuro' (grant ref. FPU20/02926). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01-0145-FEDER-007274). S.S. is supported by FCT funds (10.54499/DL57/2016/CP1363/CT0019), ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, and is also partially supported by the Portuguese Foundation for Science and Technology (UIDP/00009/2020 and UIDB/00009/2020). S. Larriba received support from Instituto de Salud Carlos III (grant: DTS18/00101), co-funded by FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe) and from 'Generalitat de Catalunya' (grant 2021SGR052). S. Larriba is also sponsored by the 'Researchers Consolidation Program' from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). All authors declare no conflict of interest related to this study.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), CSIC, Granada, Spain
| | - Nicolás Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Marta Molina
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Ángel Vilches
- Ovoclinic & Ovobank, Clínicas de Reproducción Asistida y Banco de óvulos, Marbella, Málaga, Spain
| | - Andrea Espuch
- Hospital Universitario Torrecárdenas, Unidad de Reproducción Humana Asistida, Almería, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | | | | | - Cristina González-Ravina
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Fernando Quintana-Ferraz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Susana Gómez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - David Amorós
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
| | - Ozgur Bulbul
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Stefano Castellano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Massimo Romano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
- ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
4
|
Castellano S, Tondo F, Bulbul O, Aprea S, Monti E, Carnesi E, Levi Setti PE, Albani E. Rate of testicular histology failure in predicting successful testicular sperm extraction. Front Endocrinol (Lausanne) 2024; 15:1466675. [PMID: 39449747 PMCID: PMC11499163 DOI: 10.3389/fendo.2024.1466675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background The management of Non-Obstructive (NOA) Azoospermia or Obstructive Azoospermia (OA) patients relies on testicular sperm extraction (TESE) followed by intracytoplasmic sperm injection (ICSI). In NOA patients the sperm recovery is successful in only 50% of cases and therefore the ability to predict those patients with a high probability of achieving a successful sperm retrieval would be a great value in counselling the patient and his partner. Several studies tried to suggest predictors of a positive TESE (e.g. FSH concentration), but most concluded that diagnostic testicular biopsy (histology) is best. Methods This is a retrospective analysis of 526 TESE patients. After the extraction of the testis, the resulting sample was immediately given to the embryologist, who examined the tubules for sperm cryopreservation. During the same procedure, a different specimen was destined to the histological analysis. The comparison between the two methodological approaches was carried out through a score. Results Concordance between TESE and testicular histology outcomes was found in 70,7% of patients; discordance was found in 29,3% of patients. Among the discordance outcomes, in approximately 95% we found at least 1 sperm in the TESE retrieval, while the histology report did not find any spermatozoa or found not enough compared to our evaluation; in only 5% of cases we did not find any spermatozoa or found not enough compared to what was detected in the testicular histology. Conclusion Based on our experience, to increase diagnostic accuracy, a larger biopsy should be sent to the histopathology laboratory; another option may be to use TESE cell suspension (the same embryologists employ for cryopreservation) for cytological evaluation of spermatogenesis.
Collapse
Affiliation(s)
- Stefano Castellano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Francesca Tondo
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Ozgur Bulbul
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Sabrina Aprea
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Emanuela Monti
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Edoardo Carnesi
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Paolo Emanuele Levi Setti
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
5
|
Das PJ, Kour A, Bhati J, Mishra DC, Sarkar M. Genomic and transcriptomic evaluations of infertile or subfertile Arunachali yak sperm. ZYGOTE 2024; 32:341-347. [PMID: 39417303 DOI: 10.1017/s0967199424000194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sperm infertility or subfertility is detrimental to the precious highland germplasm like yak whose population has been gradually declining in India. Understanding the 'omic' landscape of infertile or subfertile yak sperm can reveal some interesting insights. In an attempt to do the same, this study considered the semen of infertile or subfertile yak bulls for whole-genome and transcriptome evaluations. DNA sequencing revealed that the yak sperm genome contains the necessary genes to carry out all the important biological processes related to the growth, development, survival and multiplication of an organism. Interestingly, RNA Seq results highlighted that genes like VAMP7, MYLK, ARAP2 and MARCH6 showed increased expression, while biological processes related to immune response (GO:0043308, GO:0002447, GO:0002278, GO:0043307, GO:0043312, GO:0002283, GO:0043299 and GO:0002446) were significantly overrepresented. These findings hint at a possible role played by immune system in regulating infertility or subfertility in yaks. Further, in-depth studies can validate these findings and help in improving our biological understanding in this area.
Collapse
Affiliation(s)
- Pranab Jyoti Das
- ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Aneet Kour
- ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Jyotika Bhati
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Mihir Sarkar
- ICAR-National Research Centre on Yak, Dirang, Arunachal Pradesh, India
| |
Collapse
|
6
|
Cerván-Martín M, González-Muñoz S, Guzmán-Jiménez A, Higueras-Serrano I, Castilla JA, Garrido N, Luján S, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Bossini-Castillo L, Carmona FD. Changes in environmental exposures over decades may influence the genetic architecture of severe spermatogenic failure. Hum Reprod 2024; 39:612-622. [PMID: 38305414 DOI: 10.1093/humrep/deae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
STUDY QUESTION Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service, Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics-Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
7
|
Wang G, Warrington NM, Evans DM. Partitioning genetic effects on birthweight at classical human leukocyte antigen loci into maternal and fetal components, using structural equation modelling. Int J Epidemiol 2024; 53:dyad142. [PMID: 37831898 PMCID: PMC10859143 DOI: 10.1093/ije/dyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphisms in the human leukocyte antigen (HLA) region in both maternal and fetal genomes have been robustly associated with birthweight (BW) in previous genetic association studies. However, no study to date has partitioned the association between BW and classical HLA alleles into maternal and fetal components. METHODS We used structural equation modelling (SEM) to estimate the maternal and fetal effects of classical HLA alleles on BW. Our SEM leverages the data structure of the UK Biobank (UKB), which includes ∼270 000 participants' own BW and/or the BW of their firstborn child. RESULTS We show via simulation that our model yields asymptotically unbiased estimates of the maternal and fetal allelic effects on BW and appropriate type I error rates, in contrast to simple regression models. Asymptotic power calculations show that we have sufficient power to detect moderate-sized maternal or fetal allelic effects of common HLA alleles on BW in the UKB. Applying our SEM to imputed classical HLA alleles and own and offspring BW from the UKB replicated the previously reported association at the HLA-C locus and revealed strong evidence for maternal (HLA-A*03:01, B*35:01, B*39:06, P <0.001) and fetal allelic effects (HLA-B*39:06, P <0.001) of non-HLA-C alleles on BW. CONCLUSIONS Our model yields asymptotically unbiased estimates, appropriate type I error rates and appreciable power to estimate maternal and fetal effects on BW. These novel allelic associations between BW and classical HLA alleles provide insight into the immunogenetics of fetal growth in utero.
Collapse
Affiliation(s)
- Geng Wang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Nicole M Warrington
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - David M Evans
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|