1
|
Jeong Y, Yang D, Solidum JG, Ortinau L, Park D. Comparative Single-Cell Analysis Reveals Tendon Progenitor Dysfunction by Age-Associated Oxidative Stress and Its Restoration by Antioxidant Treatments. J Cell Physiol 2025; 240:e70016. [PMID: 39987523 DOI: 10.1002/jcp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Impaired healing of adult tendons with fibrosis remains clinical challenges while neonatal tendons have full functional restoration. However, age-associated cellular and molecular changes in tendon cells and tendon stem/progenitor cells (TSPCs) remain unknown. Here, comparative single cell transcriptomics of early postnatal (2 weeks old) and adult (20 weeks old) mouse tendons revealed that adult tendons have reduced number of TSPCs, decreased gene expression in tendon and cartilage development, and a greater population of fibro-tenogenic cells. Notably, adult TSPCs and tenocytes exhibit increased expression of immune-response and oxidative-stress genes with higher EGFR but decreased IGF signaling. Adult tendon cells show increased levels of intracellular reactive oxygen species (ROS) in vivo. In contrast, antioxidant treatment of adult tendons significantly reduces intracellular ROS of TSPCs and improves tendon strength in vivo. Hence, these findings suggest that increased inflammation and ROS during tendon aging deteriorates tendon function and regeneration that can be mitigated by antioxidant treatment.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dongwook Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jea Giezl Solidum
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Maekawa A, Ueda-Hayakawa I, Shimbo T, Yamazaki S, Ouchi Y, Kitayama T, Tamai K, Fujimoto M. Single-cell transcriptomic profiling of lung fibroblasts in a bleomycin-induced systemic sclerosis mouse model. Biochem Biophys Res Commun 2024; 741:151017. [PMID: 39608052 DOI: 10.1016/j.bbrc.2024.151017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrosis, vascular abnormalities, and immune dysfunction, with no definitive cure. Patients with progressive pulmonary fibrosis face a high mortality risk, underscoring the urgent need for effective treatments. Although fibroblasts are recognized as key drivers of fibrosis, the precise molecular mechanisms remain poorly understood. In this study, we employ single-cell RNA sequencing to explore the role of fibroblasts in pulmonary fibrosis. Using a mouse model induced by subcutaneous bleomycin administration, we identify two distinct fibroblast subpopulations: nephronectin-positive (NPNT) and peptidase inhibitor 16-positive cells(PI16). NPNT-positive fibroblasts, located around the alveoli, exhibit increased extracellular matrix expression following bleomycin treatment. To further understand pulmonary fibrosis, subcutaneous and intratracheal bleomycin-induced mouse models are compared. A comparative gene expression analysis reveals shared and unique features between the models, highlighting the complexity of the fibrotic process. These findings offer valuable insights into the molecular mechanisms of SSc-associated pulmonary fibrosis and may inform the development of therapies targeting specific fibroblast subpopulations or pathways.
Collapse
Affiliation(s)
- Aya Maekawa
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ikuko Ueda-Hayakawa
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc., Ibaraki, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Hokkoku D, Sasaki K, Kobayashi S, Shimbo T, Kitayama T, Yamazaki S, Yamamoto Y, Ouchi Y, Imamura H, Kado T, Toya K, Fujii W, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Takahashi H, Tamai K, Doki Y, Eguchi H. High-mobility group box 1 fragment ameliorates chronic pancreatitis induced by caerulein in mice. J Gastroenterol 2024; 59:744-757. [PMID: 38727823 DOI: 10.1007/s00535-024-02112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 07/29/2024]
Abstract
BACKGROUND Chronic pancreatitis (CP) is a progressive disease characterized by pancreatic fibrosis for which effective treatment options are lacking. Mesenchymal stem cells (MSCs) have shown potential for fibrosis treatment but face limitations in clinical application. The high-mobility group box 1 (HMGB1) fragment mobilizes MSCs from bone marrow into the blood and has emerged as a promising therapeutic agent for tissue regeneration in various pathological conditions. The aim of this study was to investigate the potential therapeutic effects of systemic administration of the HMGB1 fragment in a mouse model of CP. METHODS A caerulein-induced CP mouse model was used, and the HMGB1 fragment was administered by tail vein injection. Parameters such as body weight, pancreatic tissue damage, fibrosis, inflammatory cytokine expression, and collagen-related gene expression were evaluated using various assays, including immunohistochemistry, real-time PCR, serum analysis, and single-cell transcriptome analysis. And the migration of MSCs to the pancreas was evaluated using the parabiosis model. RESULTS Administration of the HMGB1 fragment was associated with significant improvements in pancreatic tissue damage and fibrosis. It suppressed the expression of inflammatory cytokines and activated platelet-derived growth factor receptor-α+ MSCs, leading to their accumulation in the pancreas. The HMGB1 fragment also shifted gene expression patterns associated with pancreatic fibrosis toward those of the normal pancreas. Systemic administration of the HMGB1 fragment demonstrated therapeutic efficacy in attenuating pancreatic tissue damage and fibrosis in a CP mouse model. CONCLUSION These findings highlight the potential of the HMGB1 fragment as a therapeutic target for the treatment of CP.
Collapse
Affiliation(s)
- Daiki Hokkoku
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan.
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomomi Kitayama
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Inc, Ibaraki, Osaka, Japan
| | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Inc, Ibaraki, Osaka, Japan
| | - Yukari Yamamoto
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroki Imamura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Takeshi Kado
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Keisuke Toya
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Wataru Fujii
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Xu J, Wang SG, Xu JC, Zhu JW. Jin Tiange capsule combined with rehabilitation training for the treatment of skeletal muscle atrophy after orthopedic surgery. Asian J Surg 2024:S1015-9584(24)00708-5. [PMID: 38658276 DOI: 10.1016/j.asjsur.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Jie Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226000, China; Medical School of Nantong University, Nantong, 226000, China
| | - Sheng-Gen Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226000, China; Wuxi Xinwu District Xinrui Hospital, Wuxi, 214000, China
| | - Jia-Cheng Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Jian-Wei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226000, China.
| |
Collapse
|
5
|
Zhao Z, Fan C, Wang S, Wang H, Deng H, Zeng S, Tang S, Li L, Xiong Z, Qiu X. Single-nucleus RNA and multiomics in situ pairwise sequencing reveals cellular heterogeneity of the abnormal ligamentum teres in patients with developmental dysplasia of the hip. Heliyon 2024; 10:e27803. [PMID: 38524543 PMCID: PMC10958365 DOI: 10.1016/j.heliyon.2024.e27803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Developmental dysplasia of the hip (DDH) is the most common hip deformity in pediatric orthopedics. One of the common pathological changes in DDH is the thickening and hypertrophy of the ligamentum teres. However, the underlying pathogenic mechanism responsible for these changes remains unclear. This study represents the first time that the heterogeneity of cell subsets in the abnormal ligamentum teres of patients with DDH has been resolved at the single-cell and spatial levels by snRNA-Seq and MiP-Seq. Through gene set enrichment and intercellular communication network analyses, we found that receptor-like cells and ligament stem cells may play an essential role in the pathological changes resulting in ligamentum teres thickening and hypertrophy. Eight ligand-receptor pairs related to the ECM-receptor pathway were observed to be closely associated with DDH. Further, using the Monocle R package, we predicted a differentiation trajectory of pericytes into two branches, leading to junctional ligament stem cells or fibroblasts. The expression of extracellular matrix-related genes along pseudotemporal trajectories was also investigated. Using MiP-Seq, we determined the expression distribution of marker genes specific to different cell types within the ligamentum teres, as well as differentially expressed DDH-associated genes at the spatial level.
Collapse
Affiliation(s)
- Zhenhui Zhao
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Chuiqin Fan
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Shiyou Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Haoyu Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Hansheng Deng
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shuaidan Zeng
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Li Li
- Shenzhen Luohu Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Zhu Xiong
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Xin Qiu
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
6
|
Li Z, Zhang S, Mao G, Xu Y, Kang Y, Zheng L, Long D, Chen W, Gu M, Zhang Z, Kang Y, Sheng P, Zhang Z. Identification of anterior cruciate ligament fibroblasts and their contribution to knee osteoarthritis progression using single-cell analyses. Int Immunopharmacol 2023; 125:111109. [PMID: 37883816 DOI: 10.1016/j.intimp.2023.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The mechanical properties of the anterior cruciate ligament (ACL) in the knee have been highlighted, but its role in the regulation of the joint microenvironment remains unclear, especially in the progression of Knee Osteoarthritis (KOA). Here, single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) data were integrated to reveal the transcriptional and epigenomic landscape of ACL in normal and OA states. We identified a novel subpopulation of fibroblasts in ACL, which provides new insights into the role of the ACL in knee homeostasis and disease. Degeneration of the ACL during OA mechanically alters the knee joint homeostasis and influences the microenvironment by regulating inflammatory- and osteogenic-related factors, thereby contributing to the progression of KOA. Additionally, the specific mechanism by which these Inflammation-associated Fibroblasts (IAFs) regulate KOA progression was uncovered, providing new foundation for the development of targeted treatments for KOA.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shiyong Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guping Mao
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yiyang Xu
- Department of Orthopaedics, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, China
| | - Yunze Kang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dianbo Long
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weishen Chen
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Minghui Gu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhiqi Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Yan Kang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
7
|
Pechanec MY, Mienaltowski MJ. Decoding the transcriptomic expression and genomic methylation patterns in the tendon proper and its peritenon region in the aging horse. BMC Res Notes 2023; 16:267. [PMID: 37821884 PMCID: PMC10566085 DOI: 10.1186/s13104-023-06562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES Equine tendinopathies are challenging because of the poor healing capacity of tendons commonly resulting in high re-injury rates. Within the tendon, different regions - tendon proper (TP) and peritenon (PERI) - contribute to the tendon matrix in differing capacities during injury and aging. Aged tendons have decreased repair potential; the underlying transcriptional and epigenetic changes that occur in the TP and PERI regions are not well understood. The objective of this study was to assess TP and PERI regional differences in adolescent, midlife, and geriatric horses using RNA sequencing and DNA methylation techniques. RESULTS Differences existed between TP and PERI regions of equine superficial digital flexor tendons by age as evidenced by RNASeq and DNA methylation. Cluster analysis indicated that regional distinctions existed regardless of age. Genes such as DCN, COMP, FN1, and LOX maintained elevated TP expression while genes such as GSN and AHNAK were abundant in PERI. Increased gene activity was present in adolescent and geriatric populations but decreased during midlife. Regional differences in DNA methylation were also noted. Notably, when evaluating all ages of TP against PERI, five genes (HAND2, CHD9, RASL11B, ADGRD1, and COL14A1) had regions of differential methylation as well as differential gene expression.
Collapse
Affiliation(s)
- Monica Y Pechanec
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Michael J Mienaltowski
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Szczesny SE, Corr DT. Tendon cell and tissue culture: Perspectives and recommendations. J Orthop Res 2023; 41:2093-2104. [PMID: 36794495 DOI: 10.1002/jor.25532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
The wide variety of cell and tissue culture systems used to study and engineer tendons can make it difficult to choose the best approach and "optimal" culture conditions to test a given hypothesis. Therefore, a breakout session was organized at the 2022 ORS Tendon Section Meeting that focused on establishing a set of guidelines for conducting cell and tissue culture studies of tendon. This paper summarizes the outcomes of that discussion and presents recommendations for future studies. In the case of studying tendon cell behavior, cell and tissue culture systems are reductionist models in which the culture conditions should be strictly defined to approximate the in vivo condition as closely as possible. In contrast, for tissue engineering tendon replacements, the culture conditions do not need to replicate native tendon, but the outcome measures for success should be narrowly defined for the specific clinical application. Common recommendations for both applications are that researchers should perform a baseline phenotypic characterization of the cells that are ultimately used for experimentation. For models of tendon cell behavior, culture conditions should be well justified by existing literature and meticulously reported, tissue explant viability should be assessed, and comparisons to in vivo conditions should be made to determine baseline physiological relevance. For tissue engineering applications, the functional/structural/compositional outcome targets should be defined by the specific tendons they seek to replace, with key biologic and material properties prioritized for construct assessment. Lastly, when engineering tendon replacements, researchers should utilize clinically approved cGMP materials to facilitate clinical translation.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|