1
|
Du M, Liu Y, Cao J, Li X, Wang N, He Q, Zhang L, Zhao B, Dugarjaviin M. Food from Equids-Commercial Fermented Mare's Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication. Foods 2024; 13:2344. [PMID: 39123538 PMCID: PMC11312395 DOI: 10.3390/foods13152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented mare's milk (koumiss), a traditional Central Asian dairy product derived from fermented mare's milk, is renowned for its unique sour taste and texture. It has long been consumed by nomadic tribes for its nutritional and medicinal benefits. This study aimed to comprehensively analyze the protective effects of koumiss against alcohol-induced harm across behavioral, hematological, gastrointestinal, hepatic, and reproductive dimensions using a mouse model. Optimal intoxicating doses of alcohol and koumiss doses were determined, and their effects were explored through sleep tests and blood indicator measurements. Pretreatment with koumiss delayed inebriation, accelerated sobering, and reduced mortality in mice, mitigating alcohol's impact on blood ethanol levels and various physiological parameters. Histopathological and molecular analyses further confirmed koumiss's protective role against alcohol-induced damage in the liver, stomach, small intestine, and reproductive system. Transcriptomic studies on reproductive damage indicated that koumiss exerts its benefits by influencing mitochondrial and ribosomal functions and also shows promise in mitigating alcohol's effects on the reproductive system. In summary, koumiss emerges as a potential natural agent for protection against alcohol-induced harm, opening avenues for future research in this field.
Collapse
Affiliation(s)
- Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Gray B, Lubbock K, Love C, Ryder E, Hudson S, Scarth J. Analytical advances in horseracing medication and doping control from 2018 to 2023. Drug Test Anal 2024. [PMID: 39010718 DOI: 10.1002/dta.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
Collapse
|
3
|
Gmel AI, Mikko S, Ricard A, Velie BD, Gerber V, Hamilton NA, Neuditschko M. Using high-density SNP data to unravel the origin of the Franches-Montagnes horse breed. Genet Sel Evol 2024; 56:53. [PMID: 38987703 PMCID: PMC11238448 DOI: 10.1186/s12711-024-00922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The Franches-Montagnes (FM) is the last native horse breed of Switzerland, established at the end of the 19th century by cross-breeding local mares with Anglo-Norman stallions. We collected high-density SNP genotype data (Axiom™ 670 K Equine genotyping array) from 522 FM horses, including 44 old-type horses (OF), 514 European Warmblood horses (WB) from Sweden and Switzerland (including a stallion used for cross-breeding in 1990), 136 purebred Arabians (AR), 32 Shagya Arabians (SA), and 64 Thoroughbred (TB) horses, as introgressed WB stallions showed TB origin in their pedigrees. The aim of the study was to ascertain fine-scale population structures of the FM breed, including estimation of individual admixture levels and genomic inbreeding (FROH) by means of Runs of Homozygosity. RESULTS To assess fine-scale population structures within the FM breed, we applied a three-step approach, which combined admixture, genetic contribution, and FROH of individuals into a high-resolution network visualization. Based on this approach, we were able to demonstrate that population substructures, as detected by model-based clustering, can be either associated with a different genetic origin or with the progeny of most influential sires. Within the FM breed, admixed horses explained most of the genetic variance of the current breeding population, while OF horses only accounted for a small proportion of the variance. Furthermore, we illustrated that FM horses showed high TB admixture levels and we identified inconsistencies in the origin of FM horses descending from the Arabian stallion Doktryner. With the exception of WB, FM horses were less inbred compared to the other breeds. However, the relatively few but long ROH segments suggested diversity loss in both FM subpopulations. Genes located in FM- and OF-specific ROH islands had known functions involved in conformation and behaviour, two traits that are highly valued by breeders. CONCLUSIONS The FM remains the last native Swiss breed, clearly distinguishable from other historically introgressed breeds, but it suffered bottlenecks due to intensive selection of stallions, restrictive mating choices based on arbitrary definitions of pure breeding, and selection of rare coat colours. To preserve the genetic diversity of FM horses, future conservation managements strategies should involve a well-balanced selection of stallions (e.g., by integrating OF stallions in the FM breeding population) and avoid selection for rare coat colours.
Collapse
Affiliation(s)
- Annik Imogen Gmel
- Animal GenoPhenomics, Agroscope, Route de la Tioleyre 4, 1725, Posieux, Switzerland
- Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8053, Zurich, Switzerland
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Anne Ricard
- Institut National de la Recherche Agronomique, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, RMC Gunn B19-603, Sydney, NSW, 2006, Australia
| | - Vinzenz Gerber
- Institut Suisse de Médecine Equine ISME, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Natasha Anne Hamilton
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus Neuditschko
- Animal GenoPhenomics, Agroscope, Route de la Tioleyre 4, 1725, Posieux, Switzerland.
| |
Collapse
|
4
|
Liu Y, Du M, Zhang L, Wang N, He Q, Cao J, Zhao B, Li X, Li B, Bou G, Zhao Y, Dugarjaviin M. Comparative Analysis of mRNA and lncRNA Expression Profiles in Testicular Tissue of Sexually Immature and Sexually Mature Mongolian Horses. Animals (Basel) 2024; 14:1717. [PMID: 38929336 PMCID: PMC11200857 DOI: 10.3390/ani14121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Testicular development and spermatogenesis are tightly regulated by both coding and non-coding genes, with mRNA and lncRNA playing crucial roles in post-transcriptional gene expression regulation. However, there are significant differences in regulatory mechanisms before and after sexual maturity. Nevertheless, the mRNAs and lncRNAs in the testes of Mongolian horses have not been systematically identified. In this study, we first identified the testicular tissues of sexually immature and sexually mature Mongolian horses at the tissue and protein levels, and comprehensively analyzed the expression profiles of mRNA and lncRNA in the testes of 1-year-old (12 months, n = 3) and 10-year-old (n = 3) Mongolian horses using RNA sequencing technology. Through gene expression analysis, we identified 16,582 mRNAs and 2128 unknown lncRNAs that are commonly expressed in both sexually immature and sexually mature Mongolian horses. Meanwhile, 9217 mRNAs (p < 0.05) and 2191 unknown lncRNAs (p < 0.05) were identified as differentially expressed between the two stages, which were further validated by real-time fluorescent quantitative PCR and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The analysis results showed that genes in the sexually immature stage were mainly enriched in terms related to cellular infrastructure, while genes in the sexually mature stage were enriched in terms associated with hormones, metabolism, and spermatogenesis. In summary, the findings of this study provide valuable resources for a deeper understanding of the molecular mechanisms underlying testicular development and spermatogenesis in Mongolian horses and offer new perspectives for future related research.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bei Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
5
|
Liu Y, Du M, Li X, Zhang L, Zhao B, Wang N, Dugarjaviin M. Single-Cell Transcriptome Sequencing Reveals Molecular Expression Differences and Marker Genes in Testes during the Sexual Maturation of Mongolian Horses. Animals (Basel) 2024; 14:1258. [PMID: 38731262 PMCID: PMC11082968 DOI: 10.3390/ani14091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate differences in testicular tissue morphology, gene expression, and marker genes between sexually immature (1-year-old) and sexually mature (10-year-old) Mongolian horses. The purposes of our research were to provide insights into the reproductive physiology of male Mongolian horses and to identify potential markers for sexual maturity. The methods we applied included the transcriptomic profiling of testicular cells using single-cell sequencing techniques. Our results revealed significant differences in tissue morphology and gene expression patterns between the two age groups. Specifically, 25 cell clusters and 10 cell types were identified, including spermatogonial and somatic cells. Differential gene expression analysis highlighted distinct patterns related to cellular infrastructure in sexually immature horses and spermatogenesis in sexually mature horses. Marker genes specific to each stage were also identified, including APOA1, AMH, TAC3, INHA, SPARC, and SOX9 for the sexually immature stage, and PRM1, PRM2, LOC100051500, PRSS37, HMGB4, and H1-9 for the sexually mature stage. These findings contribute to a deeper understanding of testicular development and spermatogenesis in Mongolian horses and have potential applications in equine reproductive biology and breeding programs. In conclusion, this study provides valuable insights into the molecular mechanisms underlying sexual maturity in Mongolian horses.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
De Coster T, Zhao Y, Tšuiko O, Demyda-Peyrás S, Van Soom A, Vermeesch JR, Smits K. Genome-wide equine preimplantation genetic testing enabled by simultaneous haplotyping and copy number detection. Sci Rep 2024; 14:2003. [PMID: 38263320 PMCID: PMC10805710 DOI: 10.1038/s41598-023-48103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
In different species, embryonic aneuploidies and genome-wide errors are a major cause of developmental failure. The increasing number of equine embryos being produced worldwide provides the opportunity to characterize and rank or select embryos based on their genetic profile prior to transfer. Here, we explored the possibility of generic, genome-wide preimplantation genetic testing concurrently for aneuploidies (PGT-A) and monogenic (PGT-M) traits and diseases in the horse, meanwhile assessing the incidence and spectrum of chromosomal and genome-wide errors in in vitro-produced equine embryos. To this end, over 70,000 single nucleotide polymorphism (SNP) positions were genotyped in 14 trophectoderm biopsies and corresponding biopsied blastocysts, and in 26 individual blastomeres from six arrested cleavage-stage embryos. Subsequently, concurrent genome-wide copy number detection and haplotyping by haplarithmisis was performed and the presence of aneuploidies and genome-wide errors and the inherited parental haplotypes for four common disease-associated genes with high carrier frequency in different horse breeds (GBE1, PLOD1, B3GALNT2, MUTYH), and for one color coat-associated gene (STX17) were compared in biopsy-blastocyst combinations. The euploid (n = 12) or fully aneuploid (n = 2) state and the inherited parental haplotypes for 42/45 loci of interest of the biopsied blastocysts were predicted by the biopsy samples in all successfully analyzed biopsy-blastocyst combinations (n = 9). Two biopsies showed a loss of maternal chromosome 28 and 31, respectively, which were confirmed in the corresponding blastocysts. In one of those biopsies, additional complex aneuploidies not present in the blastocyst were found. Five out of six arrested embryos contained chromosomal and/or genome-wide errors in most of their blastomeres, demonstrating their contribution to equine embryonic arrest in vitro. The application of the described PGT strategy would allow to select equine embryos devoid of genetic errors and pathogenetic variants, and with the variants of interest, which will improve foaling rate and horse quality. We believe this approach will be a gamechanger in horse breeding.
Collapse
Affiliation(s)
- T De Coster
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Y Zhao
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - O Tšuiko
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - S Demyda-Peyrás
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Department of Animal Production, Veterinary School, National University of La Plata, La Plata, Argentina
| | - A Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - J R Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - K Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
7
|
Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. The Genetic Diversity of Stallions of Different Breeds in Russia. Genes (Basel) 2023; 14:1511. [PMID: 37510415 PMCID: PMC10378902 DOI: 10.3390/genes14071511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The specifics of breeding and selection significantly affect genetic diversity and variability within a breed. We present the data obtained from the genetic analysis of 21 thoroughbred and warmblood horse breeds. The most detailed information is described from the following breeds: Arabian, Trakehner, French Trotter, Standardbred, and Soviet Heavy Horse. The analysis of 509,617 SNP variants in 87 stallions from 21 populations made it possible to estimate the genetic diversity at the genome-wide level and distinguish the studied horse breeds from each other. In this study, we searched for heterozygous and homozygous ROH regions, evaluated inbreeding using FROH analysis, and generated a population structure using Admixture 1.3 software. Our findings indicate that the Arabian breed is an ancestor of many horse breeds. The study of the full-genome architectonics of breeds is of great practical importance for preserving the genetic characteristics of breeds and managing breeding. Studies were carried out to determine homozygous regions in individual breeds and search for candidate genes in these regions. Fifty-six candidate genes for the influence of selection pressure were identified. Our research reveals genetic diversity consistent with breeding directions and the breeds' history of origin.
Collapse
Affiliation(s)
- Natalia Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Elena Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Yuri Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Anna Ryabova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Mikhail Atroshchenko
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Oksana Makhmutova
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Alexander Zaitsev
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| |
Collapse
|
8
|
Holtby AR, Hall TJ, McGivney BA, Han H, Murphy KJ, MacHugh DE, Katz LM, Hill EW. Integrative genomics analysis highlights functionally relevant genes for equine behaviour. Anim Genet 2023. [DOI: 10.1111/age.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
|