1
|
Tian X, Liu C, Yang Z, Zhu J, Fang W, Yin Y. Crosstalk between ethylene and melatonin activates isoflavone biosynthesis and antioxidant systems to produce high-quality soybean sprouts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112197. [PMID: 39019089 DOI: 10.1016/j.plantsci.2024.112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Isoflavone, which are mainly found in soybeans, are a secondary metabolite with a variety of physiological functions. In recent years, increasing the isoflavone content of soybeans has received widespread attention. Although ethephon treatment significantly increased isoflavone content in soybean sprouts, it also had a certain inhibitory effect on the growth of sprouts. Melatonin (MT), as a new type of plant hormone, not only alleviated the damage caused by abiotic stress to plants, but also promoted the synthesis of secondary metabolites. In this study, we aimed to elucidate the mechanism of exogenous MT in regulating the growth and development, and the metabolism of isoflavone in soybean sprouts under ethephon treatment. The results indicated that MT alleviated the adverse effects of ethephon treatment on soybean sprouts by increasing the activities of superoxide dismutase, peroxidase, catalase, and the expression of their corresponding genes, as well as decreased the content of malondialdehyde and hydrogen peroxide. In addition, MT further increased the isoflavone content by up-regulating the expression level of isoflavone synthesis genes and increased the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase under ethephon treatment. This study provided technical support and reference value for the production of high-quality soybean sprouts to a certain extent.
Collapse
Affiliation(s)
- Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Chen Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiangyu Zhu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| |
Collapse
|
2
|
Zhao A, He Y, Sun R, Xie D, Bai H, Han F, Huang X, Wu H, Liu C. Transcriptome and Metabolomic Analyses Reveal Tissue-Specific Glycosylation of Phenylpropanoids and Flavonoids in Toxicodendron vernicifluum. PHYSIOLOGIA PLANTARUM 2024; 176:e14545. [PMID: 39344354 DOI: 10.1111/ppl.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Toxicodendron vernicifluum (Stokes) F. A. Barkley is a tree species used primarily for lacquer production. Our study utilized transcriptome and metabolomic analysis to investigate the biosynthesis of phenylpropanoids and flavonoids, specifically the glycosylated forms, in T. vernicifluum roots, stems, and leaves. HPLC-QTOF-MS/MS identified 186 compounds, with tissue-specific distributions revealed by PCA. Flavonoids and phenylpropanoids glycosides were significantly more abundant in leaves compared with roots and stems. Full-length sequencing uncovered 17,266 transcripts in T. vernicifluum. Gene expression analysis showed higher activity of phenylpropanoid and flavonoid biosynthesis pathways in leaves. Certain genes, such as CYP73A, 4CL, CRR, CYP84A/F5H, and CYP93C, displayed associations with compound content distributions. Root tissue exhibited a higher concentration of isoflavones. Notably, glycosyltransferase expression demonstrated significant correlations with glycosylated compounds' content. Biochemical validation confirmed the involvement of TvPB_c0_g2904, encoding a UDP-glucosyltransferase, in genistin biosynthesis in T. vernicifluum.
Collapse
Affiliation(s)
- Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxi He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixiang Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - DongDong Xie
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hangyu Bai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Han
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohua Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haitang Wu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaobin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Wang L, Li C, Luo K. Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1384091. [PMID: 38984160 PMCID: PMC11231381 DOI: 10.3389/fpls.2024.1384091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Isoflavonoids, the major secondary metabolites within the flavonoid biosynthetic pathway, play important roles in plant defense and exhibit free radical scavenging properties in mammals. Recent advancements in understanding the synthesis, transport, and regulation of isoflavonoids have identified their biosynthetic pathways as promising targets for metabolic engineering, offering potential benefits such as enhanced plant resistance, improved biomass, and restoration of soil fertility. This review provides an overview of recent breakthroughs in isoflavonoid biosynthesis, encompassing key enzymes in the biosynthetic pathway, transporters influencing their subcellular localization, molecular mechanisms regulating the metabolic pathway (including transcriptional and post-transcriptional regulation, as well as epigenetic modifications). Metabolic engineering strategies aimed at boosting isoflavonoid content in both leguminous and non-leguminous plants. Additionally, we discuss emerging technologies and resources for precise isoflavonoid regulation. This comprehensive review primarily focuses on model plants and crops, offering insights for more effective and sustainable metabolic engineering approaches to enhance nutritional quality and stress tolerance.
Collapse
Affiliation(s)
- Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
5
|
Tripathi A, Chauhan N, Mukhopadhyay P. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:543-557. [PMID: 38737326 PMCID: PMC11087406 DOI: 10.1007/s12298-024-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Abstract
Plants produce a large repertoire of secondary metabolites. The pathways that lead to the biosynthesis of these metabolites are majorly conserved in the plant kingdom. However, a significant portion of these metabolites are specific to certain groups or species due to variations in the downstream pathways and evolution of the enzymes. These metabolites show spatiotemporal variation in their accumulation and are of great importance to plants due to their role in development, stress response and survival. A large number of these metabolites are in huge industrial demand due to their potential use as therapeutics, aromatics and more. Ethylene, as a plant hormone is long known, and its biosynthetic process, signaling mechanism and effects on development and response pathways have been characterized in many plants. Through exogenous treatments, ethylene and its inhibitors have been used to manipulate the production of various secondary metabolites. However, the research done on a limited number of plants in the last few years has only started to uncover the mechanisms through which ethylene regulates the accumulation of these metabolites. Often in association with other hormones, ethylene participates in fine-tuning the biosynthesis of the secondary metabolites, and brings specificity in the regulation depending on the plant, organ, tissue type and the prevailing conditions. This review summarizes the related studies, interprets the outcomes, and identifies the gaps that will help to breed better varieties of the related crops and produce high-value secondary metabolites for human benefits.
Collapse
Affiliation(s)
- Alka Tripathi
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
| | - Nisha Chauhan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
6
|
Wang Z, Dai Y, Azi F, Wang Z, Xu W, Wang D, Dong M, Xia X. Constructing Protein-Scaffolded Multienzyme Assembly Enhances the Coupling Efficiency of the P450 System for Efficient Daidzein Biosynthesis from (2 S)-Naringenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5849-5859. [PMID: 38468401 DOI: 10.1021/acs.jafc.3c09854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Daidzein is a major isoflavone compound with an immense pharmaceutical value. This study applied a novel P450 CYP82D26 which can biosynthesize daidzein from (2S)-naringenin. However, the recombinant P450 systems often suffer from low coupling efficiency, leading to an electron transfer efficiency decrease and harmful reactive oxygen species release, thereby compromising their stability and catalytic efficiency. To address these challenges, the SH3-GBD-PDZ (SGP) protein scaffold was applied to assemble a multienzyme system comprising CYP82D26, P450 reductase, and NADP+-dependent aldehyde reductase in desired stoichiometric ratios. Results showed that the coupling efficiency of the P450 system was significantly increased, primarily attributed to the channeling effect of NADPH resulting from the proximity of tethered enzymes and the electrostatic interactions between NADPH and SGP. Assembling this SGP-scaffolded assembly system in Escherichia coli yielded a titer of 240.5 mg/L daidzein with an 86% (2S)-naringenin conversion rate, which showed a 9-fold increase over the free enzymes of the P450 system. These results underscore the potential application of the SGP-scaffolded multienzyme system in enhancing the coupling and catalytic efficiency of the P450 system.
Collapse
Affiliation(s)
- Zhe Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yiqiang Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Daoying Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiudong Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Su D, Li W, Zhang Z, Cai H, Zhang L, Sun Y, Liu X, Tian Z. Discrepancy of Growth Toxicity of Polystyrene Nanoplastics on Soybean ( Glycine max) and Mung Bean ( Vigna radiata). TOXICS 2024; 12:155. [PMID: 38393250 PMCID: PMC10892715 DOI: 10.3390/toxics12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanoplastics, as a hot topic of novel contaminants, lack extensive concern in higher plants; especially the potential impact and mechanism of nanoplastics on legume crops remains elusive. In this study, the toxicity of polystyrene nanoplastics (PS-NPs, 200 nm) with diverse doses (control, 10, 50, 100, 200, 500 mg/L) to soybean and mung bean plants grown hydroponically for 7 d was investigated at both the macroscopic and molecular levels. The results demonstrated that the root length of both plants was markedly suppressed to varying degrees. Similarly, mineral elements (Fe, Zn) were notably decreased in soybean roots, consistent with Cu alteration in mung bean. Moreover, PS-NPs considerably elevated malondialdehyde (MDA) levels only in soybean roots. Enzyme activity data indicated mung bean exhibited significant damage only at higher doses of PS-NPs stress than soybean, implying mung bean is more resilient. Transcriptome analysis showed that PS-NPs stimulated the expression of genes associated with the antioxidant system in plant roots. Furthermore, starch and sucrose metabolism might play a key role in coping with PS-NPs to enhance soybean resistance, but the MAPK pathway was enriched in mung bean. Our findings provide valuable perspectives for an in-depth understanding of the performance of plants growing in waters contaminated by nanoplastics.
Collapse
Affiliation(s)
- Dan Su
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wangwang Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Hui Cai
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Le Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yuanlong Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Zhiquan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
8
|
DeMars MD, O’Connor SE. Evolution and diversification of carboxylesterase-like [4+2] cyclases in aspidosperma and iboga alkaloid biosynthesis. Proc Natl Acad Sci U S A 2024; 121:e2318586121. [PMID: 38319969 PMCID: PMC10873640 DOI: 10.1073/pnas.2318586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.
Collapse
Affiliation(s)
- Matthew D. DeMars
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|