1
|
Campos-Sánchez JC, Meseguer J, Guardiola FA. Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105274. [PMID: 39341477 DOI: 10.1016/j.dci.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Wang Q, Huang Yang M, Yu S, Chen Y, Wang K, Zhang Y, Zhao R, Li J. An improved transcriptome annotation reveals asymmetric expression and distinct regulation patterns in allotetraploid common carp. Commun Biol 2024; 7:1542. [PMID: 39567764 PMCID: PMC11579021 DOI: 10.1038/s42003-024-07177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
In allotetraploid common carp, protein-coding homoeologs presented divergent expression levels between the two subgenomes. However, whether subgenome dominance occurs in other transcriptional and post-transcriptional events remains unknown. Using Illumina RNA sequencing and PacBio full-length sequencing, we refined the common carp transcriptome annotation and explored differences in four transcriptional and post-transcriptional events between the two subgenomes. The results revealed that the B subgenome presented more alternative splicing events, as did lncRNAs and circRNAs. However, the expression levels, tissue specificity, sequence features, and functions of lncRNAs and circRNAs did not significantly differ between the two subgenomes, suggesting a common regulatory mechanism shared by the two subgenomes. Furthermore, both the number and base substitution frequency of RNA editing events were greater in the B subgenome. Functional analyses of these transcriptional events also revealed subgenome bias. Genes that undergo alternative splicing in the A subgenome participate in more biological processes, and lncRNA targets show a preference between subgenomes. CircRNA host genes in the B subgenome were associated with more biological functions, and RNA editing preferentially occurred in noncoding regions or led to nonsynonymous mutations in the B subgenome. Taken together, the refined transcriptome annotation revealed complicated and imbalanced expression strategies in allotetraploid common carp.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Meidi Huang Yang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Shuangting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yingjie Chen
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Kaikuo Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
3
|
Tommasini D, Yoshimatsu T, Baden T, Shekhar K. Comparative transcriptomic insights into the evolutionary origin of the tetrapod double cone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621990. [PMID: 39574734 PMCID: PMC11580882 DOI: 10.1101/2024.11.04.621990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The tetrapod double cone is a pair of tightly associated cones called the "principal" and the "accessory" member. It is found in amphibians, reptiles, and birds, as well as monotreme and marsupial mammals but is absent in fish and eutherian mammals. To explore the potential evolutionary origins of the double cone, we analyzed single-cell and -nucleus transcriptomic atlases of photoreceptors from six vertebrate species: zebrafish, chicken, lizard, opossum, ground squirrel, and human. Computational analyses separated the principal and accessory members in chicken and lizard, identifying molecular signatures distinguishing either member from single cones and rods in the same species. Comparative transcriptomic analyses suggest that both the principal and accessory originated from ancestral red cones. Furthermore, the gene expression variation among cone subtypes mirrors their spectral order (red → green → blue → UV), suggesting a constraint in their order of emergence during evolution. Finally, we find that rods are equally dissimilar to all cone types, suggesting that they emerged before the spectral diversification of cones.
Collapse
Affiliation(s)
- Dario Tommasini
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tom Baden
- Center for Sensory Neuroscience and Computation, Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Karthik Shekhar
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA, USA
- Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
4
|
Yu ST, Zhao R, Sun XQ, Hou MX, Cao YM, Zhang J, Chen YJ, Wang KK, Zhang Y, Li JT, Wang Q. DNA Methylation and Chromatin Accessibility Impact Subgenome Expression Dominance in the Common Carp ( Cyprinus carpio). Int J Mol Sci 2024; 25:1635. [PMID: 38338913 PMCID: PMC10855618 DOI: 10.3390/ijms25031635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
DNA methylation and chromatin accessibility play important roles in gene expression, but their function in subgenome expression dominance remains largely unknown. We conducted comprehensive analyses of the transcriptome, DNA methylation, and chromatin accessibility in liver and muscle tissues of allotetraploid common carp, aiming to reveal the function of epigenetic modifications in subgenome expression dominance. A noteworthy overlap in differential expressed genes (DEGs) as well as their functions was observed across the two subgenomes. In the promoter and gene body, the DNA methylation level of the B subgenome was significantly different than that of the A subgenome. Nevertheless, differences in DNA methylation did not align with changes in homoeologous biased expression across liver and muscle tissues. Moreover, the B subgenome exhibited a higher prevalence of open chromatin regions and greater chromatin accessibility, in comparison to the A subgenome. The expression levels of genes located proximally to open chromatin regions were significantly higher than others. Genes with higher chromatin accessibility in the B subgenome exhibited significantly elevated expression levels compared to the A subgenome. Contrastingly, genes without accessibility exhibited similar expression levels in both subgenomes. This study contributes to understanding the regulation of subgenome expression dominance in allotetraploid common carp.
Collapse
Affiliation(s)
- Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Ming-Xi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Jin Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Ying-Jie Chen
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Kai-Kuo Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (S.-T.Y.); (R.Z.); (X.-Q.S.); (M.-X.H.); (Y.-M.C.); (J.Z.); (Y.-J.C.); (K.-K.W.); (Y.Z.)
| |
Collapse
|
5
|
Picolo F, Piégu B, Monget P. Genes encoding teleost orthologues of human signal transduction proteins remain duplicated or triplicated more frequently than the whole genome. Heliyon 2023; 9:e20217. [PMID: 37809565 PMCID: PMC10559978 DOI: 10.1016/j.heliyon.2023.e20217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Cell signalling involves a myriad of proteins, many of which belong to families of related proteins, and these proteins display a huge number of interactions. One of the events that has led to the creation of new genes is whole genome duplication (WGD), a phenomenon that has made some major innovations possible. In addition to the two WGDs that happened before gnathostome radiation, teleost genomes underwent one (the 3WGD group) or two (the 4WGD group) extra WGD after separation from the lineage leading to holostei. In the present work, we studied in 63 teleost species whether the orthologues of human genes involved in 47 signalling pathways (HGSP) remain more frequently duplicated, triplicated or in the singleton state compared with the whole genome. We found that these genes have remained duplicated and triplicated more frequently in teleost of the 3WGD and 4WGD groups, respectively. Moreover, by examining pairs of interacting gene products in terms of conserved copy numbers, we found a majority of the 1:1 and 1:2 proportions in the 3WGD group (between 54% and 60%) and of the 2:2 and 2:4 proportions in the 4WGD group (30%). In both groups, we observed the 0:n proportion at a mean of approximately 10%, and we found some pseudogenes in the concerned genomes. Finally, the proportions were very different between the studied pathways. The n:n (i.e. same) proportion concerned 20%-65% of the interactions, depending on the pathways, and the n:m (i.e. different) proportion concerned 34%-70% of the interactions. Among the n:n proportion, the 1:1 ratio is most represented (25.8%) and among the n:m ratios, the 1:2 is most represented (25.0%). We noted the absence of gene loss for the JAK-STAT, FoxO and glucagon pathways. Overall, these results show that the teleost gene orthologues of HGSP remain duplicated (3WGD) and triplicated (4WGD) more frequently than the whole genome, although some genes have been lost, and the proportions have not always been maintained.
Collapse
Affiliation(s)
- Floriane Picolo
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Benoît Piégu
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Philippe Monget
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| |
Collapse
|