1
|
Dai W, Liang J, Guo R, Zhao Z, Na Z, Xu D, Li D. Bioengineering approaches for the endometrial research and application. Mater Today Bio 2024; 26:101045. [PMID: 38600921 PMCID: PMC11004221 DOI: 10.1016/j.mtbio.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
The endometrium undergoes a series of precise monthly changes under the regulation of dynamic levels of ovarian hormones that are characterized by repeated shedding and subsequent regeneration without scarring. This provides the potential for wound healing during endometrial injuries. Bioengineering materials highlight the faithful replication of constitutive cells and the extracellular matrix that simulates the physical and biomechanical properties of the endometrium to a larger extent. Significant progress has been made in this field, and functional endometrial tissue bioengineering allows an in-depth investigation of regulatory factors for endometrial and myometrial defects in vitro and provides highly therapeutic methods to alleviate obstetric and gynecological complications. However, much remains to be learned about the latest progress in the application of bioengineering technologies to the human endometrium. Here, we summarize the existing developments in biomaterials and bioengineering models for endometrial regeneration and improving the female reproductive potential.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Zhongyu Zhao
- Innovation Institute, China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Liao Z, Tang S, Jiang P, Geng T, Cope DI, Dunn TN, Guner J, Radilla LA, Guan X, Monsivais D. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. Commun Biol 2024; 7:227. [PMID: 38402336 PMCID: PMC10894266 DOI: 10.1038/s42003-024-05898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings reveal dysfunction of BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy N Dunn
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology & Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joie Guner
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, 90033, USA
| | - Linda Alpuing Radilla
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Monsivais D, Liao Z, Tang S, Jiang P, Geng T, Cope D, Dunn T, Guner J, Radilla LA, Guan X. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-3471243. [PMID: 37986901 PMCID: PMC10659538 DOI: 10.21203/rs.3.rs-3471243/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings unveil a previously unidentified dysfunction in BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
|