1
|
García-Vázquez FA. Artificial intelligence and porcine breeding. Anim Reprod Sci 2024; 269:107538. [PMID: 38926001 DOI: 10.1016/j.anireprosci.2024.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Livestock management is evolving into a new era, characterized by the analysis of vast quantities of data (Big Data) collected from both traditional breeding methods and new technologies such as sensors, automated monitoring system, and advanced analytics. Artificial intelligence (A-In), which refers to the capability of machines to mimic human intelligence, including subfields like machine learning and deep learning, is playing a pivotal role in this transformation. A wide array of A-In techniques, successfully employed in various industrial and scientific contexts, are now being integrated into mainstream livestock management practices. In the case of swine breeding, while traditional methods have yielded considerable success, the increasing amount of information requires the adoption of new technologies such as A-In to drive productivity, enhance animal welfare, and reduce environmental impact. Current findings suggest that these techniques have the potential to match or exceed the performance of traditional methods, often being more scalable in terms of efficiency and sustainability within the breeding industry. This review provides insights into the application of A-In in porcine breeding, from the perspectives of both sows (including welfare and reproductive management) and boars (including semen quality and health), and explores new approaches which are already being applied in other species.
Collapse
Affiliation(s)
- Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia 30100, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
2
|
Mateo-Otero Y. Integrating metabolomics into reproduction: Sperm metabolism and fertility enhancement in pigs. Anim Reprod Sci 2024; 269:107539. [PMID: 38926002 DOI: 10.1016/j.anireprosci.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The last decades of research have revealed that many other factors besides gamete genomes are able to determine the reproductive outcomes. Indeed, paternal factors have been observed to be capable of modulating multiple crucial features of the reproductive process, such as sperm physiology, the maternal environment and, even, the offspring health. These recent advances have been encompassed with the emergence of OMICS technologies, as they comprehensively characterise the molecular composition of biological systems. The present narrative review aimed to take a closer look at the potential of these technologies in the field of reproductive biology. This literature revision shows that most studies up to date have followed a non-targeted approach to screen mammalian seminal plasma (SP) and sperm metabolite composition through different metabolome platforms. These studies have proposed metabolites of multiple natures as potential in vivo fertility biomarkers. Yet, targeted approaches can be used to answer specific biological question, and their power is exemplified herein. For instance, metabolomic studies have uncovered not only that glycolysis is the main ATP energy source of pig sperm, but also that sperm metabolism can trigger DNA damage, hence compromise embryo development. In conclusion, this review shows the potential of both non-targeted and targeted metabolomics for the discovery of cell pathways that govern the reproductive process. Understanding these systems could help make progress in different areas, including livestock efficient breeding, the improvement of artificial reproductive technologies, and the development of biomarkers for infertility detection.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
3
|
Wei G, Tang Y, Dai L, An T, Li Y, Wang Y, Wang L, Wang X, Zhang J. Identification and functional prediction of miRNAs that regulate ROS levels in dielectric barrier discharge plasma-treated boar spermatozoa. Theriogenology 2024; 226:308-318. [PMID: 38959841 DOI: 10.1016/j.theriogenology.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.
Collapse
Affiliation(s)
- Gege Wei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yunping Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Li Dai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan, 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Lijuan Wang
- Sichuan Animal Husbandry Station, Chengdu, 610041, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
4
|
Zhang S, Zhang H, Liu K, Xu X, Qin Y, Xiao L, Zhou C, Wu J, Liu Y, Bai J. Effect of cholesterol-loaded cyclodextrin treatment on boar sperm cryopreservation. Anim Biosci 2024; 37:1558-1567. [PMID: 38754842 PMCID: PMC11366524 DOI: 10.5713/ab.24.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE This study investigated the efficacy of different concentrations of cholesterolloaded cyclodextrin (CLC) on cryopreservation in boar sperm quality. METHODS In this study, we treated boar sperm with different concentrations of CLC before freezing and analyzed the sperm cholesterol concentration, plasma membrane, acrosome integrity rate and total motility rate before and after freeze-thawing. We also investigated the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), and structural- and oxidative-damage related proteins in all groups after thawing. RESULTS The results revealed that the cholesterol concentration of the CLC-treated groups was higher than that of the control group, both before freezing and after thawing (p<0.05). The plasma membrane integrity rate, acrosome integrity rate, and total motility rate of sperm were also enhanced after thawing in the CLC-treated group (all p<0.05). Moreover, ROS and MDA production and ATP loss were reduced in CLC-treated sperm during freezing and thawing (p<0.05). Finally, CLC pretreatment partially prevented the consumption of various proteins involved in metabolism including capping actin protein of muscle Z-line subunit beta (CAPZB), heat shock protein 90 alpha family class A member 1 (HSP90AA1) and phosphoglycerate mutase 2 (PGAM2) (p<0.05). CONCLUSION The CLC treatment increased cholesterol concentration and decreased structural injury and oxidative damage during boar sperm freezing and thawing, improving the efficacy of sperm cryopreservation in boar.
Collapse
Affiliation(s)
- Silong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
- Beijing University of Agricultural, College of Animal Science and Technology, Beijing 100096,
China
| | - Hanbing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
- Beijing University of Agricultural, College of Animal Science and Technology, Beijing 100096,
China
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Chunmei Zhou
- Beijing Feifan Biotechnology Co., Ltd., Beijing 100094,
China
| | - Jianliang Wu
- Beijing Zhongyu Pig Breeding Co., Ltd., Beijing 100194,
China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| |
Collapse
|
5
|
Kameni SL, Dlamini NH, Feugang JM. Exploring the full potential of sperm function with nanotechnology tools. Anim Reprod 2024; 21:e20240033. [PMID: 39176004 PMCID: PMC11340799 DOI: 10.1590/1984-3143-ar2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Sperm quality is essential to guarantee the success of assisted reproduction. However, selecting high-quality sperm and maintaining it during (cryo)preservation for high efficiency remains challenging in livestock reproduction. A comprehensive understanding of sperm biology allows for better assessment of sperm quality, which could replace conventional sperm analyses used today to predict fertility with low accuracy. Omics approaches have revealed numerous biomarkers associated with various sperm phenotypic traits such as quality, survival during storage, freezability, and fertility. At the same time, nanotechnology is emerging as a new biotechnology with high potential for use in preparing sperm intended to improve reproduction in livestock. The unique physicochemical properties of nanoparticles make them exciting tools for targeting (e.g., sperm damage and sexing) and non-targeting bioapplications. Recent advances in sperm biology have led to the discovery of numerous biomarkers, making it possible to target specific subpopulations of spermatozoa within the ejaculate. In this review, we explore potential biomarkers associated with sperm phenotypes and highlight the benefits of combining these biomarkers with nanoparticles to further improve sperm preparation and technology.
Collapse
Affiliation(s)
- Serge Leugoué Kameni
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Notsile Hleliwe Dlamini
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Jean Magloire Feugang
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| |
Collapse
|
6
|
Wen Y, Cai J, Zhang H, Li Y, Yu M, Liu J, Han F. The Potential Mechanisms Involved in the Disruption of Spermatogenesis in Mice by Nanoplastics and Microplastics. Biomedicines 2024; 12:1714. [PMID: 39200182 PMCID: PMC11351746 DOI: 10.3390/biomedicines12081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Plastic-based products are ubiquitous due to their tremendous utility in our daily lives. Nanoplastic (NP) and microplastic (MP) pollution has become a severe threat to the planet and is a growing concern. It has been widely reported that polystyrene (PS) MPs are severely toxic to the male reproduction system, with effects including decreased sperm parameters, impaired spermatogenesis, and damaged testicular structures. However, the molecular mechanisms for impaired spermatogenesis remain poorly understood. METHODS C57BL/6 male mice were treated with PS-NPs (80 nm) and PS-MPs (5 μm) by oral gavage every day for 60 days. A series of morphological analyses were completed to explore the influence of PS-NP and PS-MP exposure on the testes. Compared to other cell types in the seminiferous tubule, PS-NP and PS-MP exposure can lead to decreased spermatocytes. Then, more refined molecular typing was further performed based on gene expression profiles to better understand the common and specific molecular characteristics after exposure to PS-NPs and PS-MPs. RESULTS There were 1794 common DEGs across the PS-NP groups at three different doses and 1433 common DEGs across the PS-MP groups at three different doses. GO and KEGG analyses of the common DEGs in the PS-NP and PS-MP groups were performed to enrich the common and specific functional progress and signaling pathways, including 349 co-enriched GO entries and 13 co-enriched pathways. Moreover, 348 GO entries and 33 pathways were specifically enriched in the PS-NP group, while 526 GO entries and 15 pathways were specifically enriched in the PS-MPs group. CONCLUSIONS PS-NPs were predominantly involved in regulating retinoic acid metabolism, whereas PS-MPs primarily influenced pyruvate metabolism and thyroid hormone metabolism. Our results highlight the different molecular mechanisms of PS-NPs and PS-MPs in the impairment of spermatogenesis in male mammals for the first time, providing valuable insights into the precise mechanisms of PS-NPs and PS-MPs in male reproduction.
Collapse
Affiliation(s)
- Yixian Wen
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Jing Cai
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Huilian Zhang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Yi Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Manyao Yu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China;
| | - Fei Han
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| |
Collapse
|
7
|
Ren H, Zhang Y, Bi Y, Wang H, Fang G, Zhao P. Target silencing of porcine SPAG6 and PPP1CC by shRNA attenuated sperm motility. Theriogenology 2024; 219:138-146. [PMID: 38430798 DOI: 10.1016/j.theriogenology.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The quality of sperm significantly influences the reproductive efficiency of pig herds. High-quality sperm is necessary for efficient fertilization and to maximize the litter numbers in commercial pig farming. However, the understanding of genes regulating porcine sperm motility and viability is limited. In this study, we validated porcine sperm/Sertoli-specific promoters through the luciferase reporter system and identified vital genes for sperm quality via loss-of-function means. Further, the shRNAs driven by the ACE and SP-10 promoters were used to knockdown the SPAG6 and PPP1CC genes which were provisionally important for sperm quality. We assessed the effects of SPAG6 and PPP1CC knockdown on sperm motility by using the sperm quality analyzer and flow cytometry. The results showed that the ACE promoter is active in both porcine Sertoli cells and sperms, whereas the SP-10 promoter is operating exclusively in sperm cells. Targeted interference with SPAG6 and PPP1CC expression in sperm cells decreases the motility and increases apoptosis rates in porcine sperms. These findings not only offer new genetic tools for targeting male germ cells but also highlight the crucial roles of SPAG6 and PPP1CC in porcine sperm function.
Collapse
Affiliation(s)
- Hongyan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yandi Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yanzhen Bi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Heng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Guijie Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, Hubei Province, PR China.
| | - Pengxiang Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China.
| |
Collapse
|
8
|
Peña FJ, Martín-Cano FE, Becerro-Rey L, Ortega-Ferrusola C, Gaitskell-Phillips G, da Silva-Álvarez E, Gil MC. The future of equine semen analysis. Reprod Fertil Dev 2024; 36:RD23212. [PMID: 38467450 DOI: 10.1071/rd23212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
We are currently experiencing a period of rapid advancement in various areas of science and technology. The integration of high throughput 'omics' techniques with advanced biostatistics, and the help of artificial intelligence, is significantly impacting our understanding of sperm biology. These advances will have an appreciable impact on the practice of reproductive medicine in horses. This article provides a brief overview of recent advances in the field of spermatology and how they are changing assessment of sperm quality. This article is written from the authors' perspective, using the stallion as a model. We aim to portray a brief overview of the changes occurring in the assessment of sperm motility and kinematics, advances in flow cytometry, implementation of 'omics' technologies, and the use of artificial intelligence/self-learning in data analysis. We also briefly discuss how some of the advances can be readily available to the practitioner, through the implementation of 'on-farm' devices and telemedicine.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
9
|
Mateo-Otero Y, Llavanera M, Torres-Garrido M, Yeste M. Embryo development is impaired by sperm mitochondrial-derived ROS. Biol Res 2024; 57:5. [PMID: 38287386 PMCID: PMC10825979 DOI: 10.1186/s40659-024-00483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain.
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain
| | - Marc Torres-Garrido
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| |
Collapse
|