1
|
Hu J, Chen G, Zeng Z, Ran H, Zhang R, Yu Q, Xie Y, He Y, Wang F, Li X, Huang K, Liu H, Zhang T. Systematically altered connectome gradient in benign childhood epilepsy with centrotemporal spikes: Potential effect on cognitive function. Neuroimage Clin 2024; 43:103628. [PMID: 38850833 PMCID: PMC11201345 DOI: 10.1016/j.nicl.2024.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Benign childhood epilepsy with centrotemporal spikes (BECTS) affects brain network hierarchy and cognitive function; however, itremainsunclearhowhierarchical changeaffectscognition in patients with BECTS. A major aim of this study was to examine changes in the macro-network function hierarchy in BECTS and its potential contribution to cognitive function. METHODS Overall, the study included 50 children with BECTS and 69 healthy controls. Connectome gradient analysis was used to determine the brain network hierarchy of each group. By comparing gradient scores at each voxel level and network between groups, we assessed changes in whole-brain voxel-level and network hierarchy. Functional connectivity was used to detect the functional reorganization of epilepsy caused by these abnormal brain regions based on these aberrant gradients. Lastly, we explored the relationships between the change gradient and functional connectivity values and clinical variables and further predicted the cognitive function associated with BECTS gradient changes. RESULTS In children with BECTS, the gradient was extended at different network and voxel levels. The gradient scores frontoparietal network was increased in the principal gradient of patients with BECTS. The left precentral gyrus (PCG) and right angular gyrus gradient scores were significantly increased in the principal gradient of children with BECTS. Moreover, in regions of the brain with abnormal principal gradients, functional connectivity was disrupted. The left PCG gradient score of children with BECTS was correlated with the verbal intelligence quotient (VIQ), and the disruption of functional connectivity in brain regions with abnormal principal gradients was closely related to cognitive function. VIQ was significantly predicted by the principal gradient map of patients. SIGNIFICANCE The results indicate connectome gradient disruption in children with BECTS and its relationship to cognitive function, thereby increasing our understanding of the functional connectome hierarchy and providing potential biomarkers for cognitive function of children with BECTS.
Collapse
Affiliation(s)
- Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Zhen Zeng
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Ruoxi Zhang
- Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Fuqin Wang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Xuhong Li
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Kexing Huang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| |
Collapse
|
2
|
Fang S, Zhu C, Zhang J, Wu L, Zhang Y, Huang H, Lin W. EEG microstates in epilepsy with and without cognitive dysfunction: Alteration in intrinsic brain activity. Epilepsy Behav 2024; 154:109729. [PMID: 38513568 DOI: 10.1016/j.yebeh.2024.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE This study aims to investigate the difference between epilepsy comorbid with and without cognitive dysfunction. METHOD Participants were classified into patients with epilepsy comorbid cognitive dysfunction (PCCD) and patients with epilepsy without comorbid cognitive dysfunction (nPCCD). Microstate analysis was applied based on 20-channel electroencephalography (EEG) to detect the dynamic changes in the whole brain. The coverage, occurrence per second, duration, and transition probability were calculated. RESULT The occurrence per second and the coverage of microstate B in the PCCD group were higher than that of the nPCCD group. Coverage in microstate D was lower in the PCCD group than in the nPCCD group. In addition, the PCCD group has a higher probability of A to B and B to A transitions and a lower probability of A to D and D to A transitions. CONCLUSION Our research scrutinizes the disparities observed within EEG microstates among epilepsy patients both with and without comorbid cognitive dysfunction. SIGNIFICANCE EEG microstate analysis offers a novel metric for assessing neuropsychiatric disorders and supplies evidence for investigating the mechanisms and the dynamic change of epilepsy comorbid cognitive dysfunction.
Collapse
Affiliation(s)
- Shenzhi Fang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Jinying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Luyan Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, PR China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, PR China; Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, PR China.
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, PR China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, PR China.
| |
Collapse
|
3
|
Fu Y, Zhang J, Cao Y, Ye L, Zheng R, Li Q, Shen B, Shi Y, Cao J, Fang J. Recognition memory deficits detected through eye-tracking in well-controlled children with self-limited epilepsy with centrotemporal spikes. Epilepsia 2024; 65:1128-1140. [PMID: 38299621 DOI: 10.1111/epi.17902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVE Children with self-limited epilepsy characterized by centrotemporal spikes (SeLECTS) exhibit cognitive deficits in memory during the active phase, but there is currently a lack of studies and techniques to assess their memory development after well-controlled seizures. In this study, we employed eye-tracking techniques to investigate visual memory and its association with clinical factors and global intellectual ability, aiming to identify potential risk factors by examining encoding and recognition processes. METHODS A total of 26 recruited patients diagnosed with SeLECTS who had been seizure-free for at least 2 years, along with 24 control subjects, underwent Wechsler cognitive assessment and an eye-movement-based memory task while video-electroencephalographic (EEG) data were recorded. Fixation and pupil data related to eye movements were utilized to detect distinct memory processes and subsequently to compare the cognitive performance of patients exhibiting different regression patterns on EEG. RESULTS The findings revealed persistent impairments in visual memory among children with SeLECTS after being well controlled, primarily observed in the recognition stage rather than the encoding phase. Furthermore, the age at onset, frequency of seizures, and interictal epileptiform discharges exhibited significant correlations with eye movement data. SIGNIFICANCE Children with SeLECTS exhibit persistent recognition memory impairment after being well controlled for the disease. Controlling the frequency of seizures and reducing prolonged epileptiform activity may improve memory cognitive development. The application of the eye-tracking technique may provide novel insights into exploring memory cognition as well as underlying mechanisms associated with pediatric epilepsy.
Collapse
Affiliation(s)
- Yanlu Fu
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jingxin Zhang
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yina Cao
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Linmei Ye
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Runze Zheng
- Artificial Intelligence Institute, Hangzhou Dianzi University School of Automation, Hangzhou, Zhejiang, China
| | - Qiwei Li
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Beibei Shen
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yi Shi
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiuwen Cao
- Artificial Intelligence Institute, Hangzhou Dianzi University School of Automation, Hangzhou, Zhejiang, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
4
|
Feng X, Piper RJ, Prentice F, Clayden JD, Baldeweg T. Functional brain connectivity in children with focal epilepsy: A systematic review of functional MRI studies. Seizure 2024; 117:164-173. [PMID: 38432080 DOI: 10.1016/j.seizure.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Epilepsy is increasingly recognised as a brain network disorder and many studies have investigated functional connectivity (FC) in children with epilepsy using functional MRI (fMRI). This systematic review of fMRI studies, published up to November 2023, investigated profiles of FC changes and their clinical relevance in children with focal epilepsy compared to healthy controls. A literature search in PubMed and Web of Science yielded 62 articles. We categorised the results into three groups: 1) differences in correlation-based FC between patients and controls; 2) differences in other FC measures between patients and controls; and 3) associations between FC and disease variables (for example, age of onset), cognitive and seizure outcomes. Studies revealed either increased or decreased FC across multiple brain regions in children with focal epilepsy. However, findings lacked consistency: conflicting FC alterations (decreased and increased FC) co-existed within or between brain regions across all focal epilepsy groups. The studies demonstrated overall that 1) interhemispheric connections often displayed abnormal connectivity and 2) connectivity within and between canonical functional networks was decreased, particularly for the default mode network. Focal epilepsy disrupted FC in children both locally (e.g., seizure-onset zones, or within-brain subnetworks) and globally (e.g., whole-brain network architecture). The wide variety of FC study methodologies limits clinical application of the results. Future research should employ longitudinal designs to understand the evolution of brain networks during the disease course and explore the potential of FC biomarkers for predicting cognitive and postsurgical seizure outcomes.
Collapse
Affiliation(s)
- Xiyu Feng
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Rory J Piper
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom; Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom
| | - Freya Prentice
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Jonathan D Clayden
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom.
| |
Collapse
|