1
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
2
|
Gautheron O, Nyhan L, Torreiro MG, Tlais AZA, Cappello C, Gobbetti M, Hammer AK, Zannini E, Arendt EK, Sahin AW. Exploring the Impact of Solid-State Fermentation on Fava Bean Flour: A Comparative Study of Aspergillus oryzae and Rhizopus oligosporus. Foods 2024; 13:2922. [PMID: 39335851 PMCID: PMC11431236 DOI: 10.3390/foods13182922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Fava bean (Vicia faba L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. In this study, fava bean flour (FB) was fermented with Aspergillus oryzae and Rhizopus oligosporus to produce FBA and FBR, respectively, ingredients with distinct nutritional, functional, and aroma characteristics. The protein content increased by 20% in FBA and 8% in FBR, while fat levels rose more significantly in FBR (+40%). The overall content of fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) decreased by 47% (FBA) and 57% (FBR), although polyol production by A. oryzae was observed. SSF improved the nutritional profile of FBA and FBR, with a notable increase in the concentration of essential amino acids observed, and a reduction in most antinutrients, with the exception of trypsin inhibitors. SSF resulted in the formation of aggregates, which increased the particle size and reduced protein solubility. Emulsions prepared with the fermented ingredients separated faster, and the foaming capacity of both FBA and FBR was decreased, but an increase in water-holding capacity was observed. SSF resulted in the production of predominantly savoury-associated aroma compounds, with compounds characteristic of metallic and mouldy aromas reduced. These results indicate the potential of SSF to transform FB with enhanced nutritional value and improved sensory and functional properties.
Collapse
Affiliation(s)
- Ophélie Gautheron
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| | | | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Claudia Cappello
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Andreas Klaus Hammer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany;
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, 00185 Rome, RM, Italy
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| |
Collapse
|
3
|
Ning YN, Liang X, Shen X, Tian D, Li WT, Luo XM, Feng JX, Zhao S. A RsrC-RsrA-RsrB transcriptional circuit positively regulates polysaccharide-degrading enzyme biosynthesis and development in Penicillium oxalicum. Commun Biol 2024; 7:848. [PMID: 38992164 PMCID: PMC11239660 DOI: 10.1038/s42003-024-06536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Filamentous fungi produce polysaccharide-degrading enzymes, which is controlled by poorly understood transcriptional circuits. Here we show that a circuit comprising RsrC-RsrA-RsrB (Rsr: production of raw-starch-degrading enzyme regulator) that positively regulates production of raw starch-degrading enzymes in Penicillium oxalicum. Transcription factor (TF) RsrA is essential for biosynthesis of raw starch-degrading enzymes. RsrB and RsrC containing Zn2Cys6- and C2H2-zinc finger domains, act downstream and upstream of RsrA, respectively. RsrA activates rsrB transcription, and three nucleotides (G-286, G-287 and G-292) of rsrB promoter region are required for RsrA, in terms of TF, for binding. RsrB165-271 binds to DNA sequence 5'-TCGATCAGGCACGCC-3' in the promoter region of the gene encoding key raw-starch-degrading enzyme PoxGA15A. RsrC specifically binds rsrA promoter, but not amylase genes, to positively regulate the expression of rsrA and the production of raw starch-degrading enzymes. These findings expand complex regulatory network of fungal raw starch-degrading enzyme biosynthesis.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Xue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Xin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Xue-Mei Luo
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, P. R. China.
| |
Collapse
|