1
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
2
|
Shin Y, Prasad R, Das N, Taylor JA, Qin H, Hu W, Hu YY, Fu R, Zhang R, Zhou HX, Cross TA. Mycobacterium tuberculosis CrgA Forms a Dimeric Structure with Its Transmembrane Domain Sandwiched between Cytoplasmic and Periplasmic β-Sheets, Enabling Multiple Interactions with Other Divisome Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627054. [PMID: 39677619 PMCID: PMC11643046 DOI: 10.1101/2024.12.05.627054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
CrgA is a key transmembrane (TM) protein in the cell division process of Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis. While many of the Mtb divisome proteins have been identified, their structures and interactions remain largely unknown. Previous studies of CrgA using oriented-sample solid-state NMR have defined the tilt and rotation of the TM helices, but the cytoplasmic and periplasmic domains and even the oligomeric state were uncharacterized. Here, combining oriented-sample and magic-angle spinning solid-state NMR spectra, we solved the full-length structure of CrgA. The structure features a dimer with a TM domain sandwiched between a cytoplasmic β-sheet and a periplasmic β-sheet. The β-sheets stabilize dimerization, which in turn increases CrgA's ability to participate in multiple protein interactions. Within the membrane, CrgA binds FtsQ, CwsA, PbpA, FtsI, and MmPL3 via its TM helices; in the cytoplasm, Lys23 and Lys25 project outward from the β-sheet to interact with acidic residues of FtsQ and FtsZ. The structural determination of CrgA thus provides significant insights into its roles in recruiting other divisome proteins and stabilizing their complexes for Mtb cell wall synthesis and polar growth.
Collapse
Affiliation(s)
- Yiseul Shin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607
| | - Nabanita Das
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Joshua A. Taylor
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Huajun Qin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Wenhao Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607
| | - Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
3
|
Tian Z, Truong E, Hu W, Fan J, Fu R, Cross TA, Lin X, Zhang R, Hu YY. Expanding the Toolset of Biomolecular NMR with Efficient and Cost-Effective 17O-Labeling via Bacterial Expression. Chemistry 2024:e202403148. [PMID: 39617720 DOI: 10.1002/chem.202403148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/06/2024]
Abstract
Oxygen plays a central role in biomolecular structures and functions, with 17O NMR emerging as a powerful tool for elucidating biomolecular properties. However, the low natural abundance of the NMR-active isotope, 17O (0.0373 %), presents a significant hurdle to its widespread application. Here, we introduce a rapid and cost-effective approach for amino acid-specific 17O-labeling of recombinant proteins. Using a common bacterial expression system and with a 30-minute rapid synthesis protocol of 17O-labeled amino acids via mechanochemical saponification, we have generated Leu- and Phe-specific 17O-labeled recombinant proteins derived from diverse organisms, including CrgA and FtsQ from Mycobacterium tuberculosis and E protein from SARS-CoV-2 virus, demonstrating the applicability of our technique for amino acids known to be isotopically labeled without scrambling. We have acquired magic-angle-spinning 17O NMR of these proteins to confirm the successful 17O labeling and illustrate the sensitivity of 17O NMR to the protein's local structural environments. Our work significantly broadens the accessibility of 17O-NMR, empowering researchers to delve deeper into protein biophysics and biochemistry. This approach opens new avenues for understanding cellular processes at the molecular level by providing an effective tool for investigating oxygen-related interactions and chemistry within biomolecules.
Collapse
Affiliation(s)
- Ziya Tian
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Erica Truong
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Wenhao Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Jiaxing Fan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Timothy A Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| |
Collapse
|
4
|
Katiyar H, Arduini A, Li Y, Liang C. SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses 2024; 16:1648. [PMID: 39599763 PMCID: PMC11598957 DOI: 10.3390/v16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was responsible for causing the COVID-19 pandemic. Intensive research has illuminated the complex biology of SARS-CoV-2 and its continuous evolution during and after the COVID-19 pandemic. While much attention has been paid to the structure and functions of the viral spike protein and the entry step of viral infection, partly because these are targets for neutralizing antibodies and COVID-19 vaccines, the later stages of SARS-CoV-2 replication, including the assembly and egress of viral progenies, remain poorly characterized. This includes insight into how the activities of the viral structural proteins are orchestrated spatially and temporally, which cellular proteins are assimilated by the virus to assist viral assembly, and how SARS-CoV-2 counters and evades the cellular mechanisms antagonizing virus assembly. In addition to becoming infectious, SARS-CoV-2 progenies also need to survive the hostile innate and adaptive immune mechanisms, such as recognition by neutralizing antibodies. This review offers an updated summary of the roles of SARS-CoV-2 structural proteins in viral assembly, the regulation of assembly by viral and cellular factors, and the cellular mechanisms that restrict this process. Knowledge of these key events often reveals the vulnerabilities of SARS-CoV-2 and aids in the development of effective antiviral therapeutics.
Collapse
Affiliation(s)
- Harshita Katiyar
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yichen Li
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
5
|
Volovik MV, Denieva ZG, Gifer PK, Rakitina MA, Batishchev OV. Membrane Activity and Viroporin Assembly for the SARS-CoV-2 E Protein Are Regulated by Cholesterol. Biomolecules 2024; 14:1061. [PMID: 39334828 PMCID: PMC11430671 DOI: 10.3390/biom14091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The SARS-CoV-2 E protein is an enigmatic viral structural protein with reported viroporin activity associated with the acute respiratory symptoms of COVID-19, as well as the ability to deform cell membranes for viral budding. Like many viroporins, the E protein is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the structure of the protein complex have yielded inconclusive results, suggesting several possible oligomers, ranging from dimers to pentamers. Here, we combined patch-clamp, confocal fluorescence microscopy on giant unilamellar vesicles, and atomic force microscopy to show that E protein can exhibit two modes of membrane activity depending on membrane lipid composition. In the absence or the presence of a low content of cholesterol, the protein forms short-living transient pores, which are seen as semi-transmembrane defects in a membrane by atomic force microscopy. Approximately 30 mol% cholesterol is a threshold for the transition to the second mode of conductance, which could be a stable pentameric channel penetrating the entire lipid bilayer. Therefore, the E-protein has at least two different types of activity on membrane permeabilization, which are regulated by the amount of cholesterol in the membrane lipid composition and could be associated with different types of protein oligomers.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Zaret G Denieva
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Polina K Gifer
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Maria A Rakitina
- N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 1 Ostrovityanova Street, 117997 Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
6
|
Townsend JA, Fapohunda O, Wang Z, Pham H, Taylor MT, Kloss B, Ho Park S, Opella S, Aspinwall CA, Marty MT. Differences in Oligomerization of the SARS-CoV-2 Envelope Protein, Poliovirus VP4, and HIV Vpu. Biochemistry 2024; 63:241-250. [PMID: 38216552 PMCID: PMC10872257 DOI: 10.1021/acs.biochem.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Viroporins constitute a class of viral membrane proteins with diverse roles in the viral life cycle. They can self-assemble and form pores within the bilayer that transport substrates, such as ions and genetic material, that are critical to the viral infection cycle. However, there is little known about the oligomeric state of most viroporins. Here, we use native mass spectrometry in detergent micelles to uncover the patterns of oligomerization of the full-length SARS-CoV-2 envelope (E) protein, poliovirus VP4, and HIV Vpu. Our data suggest that the E protein is a specific dimer, VP4 is exclusively monomeric, and Vpu assembles into a polydisperse mixture of oligomers under these conditions. Overall, these results revealed the diversity in the oligomerization of viroporins, which has implications for the mechanisms of their biological functions as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
- Julia A. Townsend
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Zhihan Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Hieu Pham
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Taylor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|