1
|
Satoh Y, Ono Y, Takahashi R, Katayama H, Iwaoka M, Yoshino O, Arai K. Seleno-relaxin analogues: effect of internal and external diselenide bonds on the foldability and a fibrosis-related factor of endometriotic stromal cells. RSC Chem Biol 2024; 5:729-737. [PMID: 39092438 PMCID: PMC11289879 DOI: 10.1039/d4cb00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024] Open
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone of about 6 kDa, first identified as a reproductive hormone involved in vasoregulation during pregnancy. It has recently attracted strong interest because of its diverse functions, including anti-inflammatory, anti-fibrotic, and vasodilatory, and has been suggested as a potential peptide-based drug candidate for a variety of diseases. Mature H2 relaxin is constituted by the A- and B-chains stabilized by two interchain disulfide (SS) bridges and one intrachain SS linkage. In this study, seleno-relaxins, SeRlx-α and SeRlx-β, which are [C11UA,C11UB] and [C10UA,C15UA] variants of H2 relaxin, respectively, were synthesized via a one-pot oxidative chain assembly (folding) from the component A- and B-chains. The substitution of SS bonds in a protein with their analogue, diselenide (SeSe) bonds, has been shown to alter the physical, chemical, and physiological properties of the protein. The surface SeSe bond (U11A-U11B) enhanced the yield of chain assembly while the internal SeSe bond (U10A-U15A) improved the reaction rate of the folding, indicating that these bridges play a major role in controlling the thermodynamics and kinetics, respectively, of the folding mechanism. Furthermore, SeRlx-α and SeRlx-β effectively reduced the expression of a tissue fibrosis-related factor in human endometriotic stromal cells. Thus, the findings of this study indicate that the S-to-Se substitution strategy not only enhances the foldability of relaxin, but also provides new guidance for the development of novel relaxin formulations for endometriosis treatment.
Collapse
Affiliation(s)
- Yuri Satoh
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| |
Collapse
|
2
|
Arai K, Okumura M, Lee YH, Katayama H, Mizutani K, Lin Y, Park SY, Sawada K, Toyoda M, Hojo H, Inaba K, Iwaoka M. Diselenide-bond replacement of the external disulfide bond of insulin increases its oligomerization leading to sustained activity. Commun Chem 2023; 6:258. [PMID: 37989850 PMCID: PMC10663622 DOI: 10.1038/s42004-023-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 μg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
- Bio-Analytical Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
- Research Headquarters, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Korea
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Kaichiro Sawada
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| |
Collapse
|
3
|
Okada S, Matsumoto Y, Takahashi R, Arai K, Kanemura S, Okumura M, Muraoka T. Semi-enzymatic acceleration of oxidative protein folding by N-methylated heteroaromatic thiols. Chem Sci 2023; 14:7630-7636. [PMID: 37476727 PMCID: PMC10355094 DOI: 10.1039/d3sc01540h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
We report the first example of a synthetic thiol-based compound that promotes oxidative protein folding upon 1-equivalent loading to the disulfide bonds in the client protein to afford the native form in over 70% yield. N-Methylation is a central post-translational processing of proteins in vivo for regulating functions including chaperone activities. Despite the universally observed biochemical reactions in nature, N-methylation has hardly been utilized in the design, functionalization, and switching of synthetic bioregulatory agents, particularly folding promotors. As a biomimetic approach, we developed pyridinylmethanethiols to investigate the effects of N-methylation on the promotion of oxidative protein folding. For a comprehensive study on the geometrical effects, constitutional isomers of pyridinylmethanethiols with ortho-, meta-, and para-substitutions have been synthesized. Among the constitutional isomers, para-substituted pyridinylmethanethiol showed the fastest disulfide-bond formation of the client proteins to afford the native forms most efficiently. N-Methylation drastically increased the acidity and enhanced the oxidizability of the thiol groups in the pyridinylmethanethiols to enhance the folding promotion efficiencies. Among the isomers, para-substituted N-methylated pyridinylmethanethiol accelerated the oxidative protein folding reactions with the highest efficiency, allowing for protein folding promotion by 1-equivalent loading as a semi-enzymatic activity. This study will offer a novel bioinspired molecular design of synthetic biofunctional agents that are semi-enzymatically effective for the promotion of oxidative protein folding including biopharmaceuticals such as insulin in vitro by minimum loading.
Collapse
Affiliation(s)
- Shunsuke Okada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Yosuke Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Shingo Kanemura
- School of Science, Kwansei Gakuin University 1 Gakuen Uegahara Sanda Hyogo 669-1330 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology 3-8-1 Harumi-cho Fuchu Tokyo 183-8538 Japan
- Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakato, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan
| |
Collapse
|
4
|
Liu BX, Wang F, Chen Y, Rao W, Shen SS, Wang SY. Visible-Light-Promoted Denitrogenative Ortho-selenylation Reaction of benzotriazinones: Synthesis of ortho-selenylated Benzamides, Ebselen Analogs. Org Chem Front 2022. [DOI: 10.1039/d2qo00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-promoted regioselective denitrogenative cross-coupling between benzotriazinones and selenosulfonates is reported. This protocol allows for the convenient synthesis of ortho-selenylated benzamides in good yields from readily available starting materials under...
Collapse
|
5
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Scheide MR, Schneider AR, Jardim GAM, Martins GM, Durigon DC, Saba S, Rafique J, Braga AL. Electrochemical synthesis of selenyl-dihydrofurans via anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Org Biomol Chem 2021; 18:4916-4921. [PMID: 32353091 DOI: 10.1039/d0ob00629g] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we report an eco-friendly, electrosynthetic approach for the intramolecular oxyselenylation of allyl-naphthol/phenol derivatives. This reaction proceeds with 0.2 equiv. of nBu4NClO4 as an electrolyte and Pt working electrodes in an undivided cell, resulting in the selenyl-dihydrofurans in good to excellent yields. Furthermore, several of the synthesized products presented a high percentage of acetylcholinesterase (AChE) inhibition, highlighting their potential anti-Alzheimer activity.
Collapse
Affiliation(s)
- Marcos R Scheide
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Alex R Schneider
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Guilherme A M Jardim
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Guilherme M Martins
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Daniele C Durigon
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Sumbal Saba
- Centro de Ciências Naturais e Humanas-CCNH, Universidade Federal do ABC - UFABC, Santo André, 09210-580, SP, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul - UFMS, Campo Grande, 79074-460, MS, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| |
Collapse
|
7
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
8
|
Rafique J, Rampon DS, Azeredo JB, Coelho FL, Schneider PH, Braga AL. Light-mediated Seleno-Functionalization of Organic Molecules: Recent Advances. CHEM REC 2021; 21:2739-2761. [PMID: 33656248 DOI: 10.1002/tcr.202100006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
Organoselenium compounds constitute an important class of substances with applications in the biological, medicinal and material sciences as well as in modern organic synthesis, attracting considerable attention from the scientific community. Therefore, the construction of the C-Se bond via facile, efficient and sustainable strategies to access complex scaffolds from simple substrates are an appealing and hot topic. Visible light can be regarded as an alternative source of energy and is associated with environmentally-friendly processes. Recently, the use of visible-light mediated seleno-functionalization has emerged as an ideal and powerful route to obtain high-value selenylated products, with diminished cost and waste. This approach, involving photo-excited substrates/catalyst and single-electron transfer (SET) between substrates in the presence of visible light has been successfully used in the versatile and direct insertion of organoselenium moieties in activated and unactivated C(sp3 )-H, C(sp2 )-H, C(sp)-H bonds as well as C-heteroatom bonds. In most cases, ease of operation and accessibility of the light source (LEDs or commercial CFL bulbs) makes this approach more attractive and sustainable than the traditional strategies.
Collapse
Affiliation(s)
- Jamal Rafique
- Instituto de Química (INQUI), Universidade Federal de Mato Grosso do Sul -UFMS, Campo Grande, 79074-460, MS -, Brazil
| | - Daniel S Rampon
- Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-990, PR Brazil
| | - Juliano B Azeredo
- Departamento de Farmácia, Universidade Federal do Pampa, Uruguaiana, 97500-970, RS -, Brazil
| | - Felipe L Coelho
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
9
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
10
|
Arai K, Iwaoka M. Flexible Folding: Disulfide-Containing Peptides and Proteins Choose the Pathway Depending on the Environments. Molecules 2021; 26:E195. [PMID: 33401729 PMCID: PMC7794709 DOI: 10.3390/molecules26010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.
Collapse
Affiliation(s)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan;
| |
Collapse
|
11
|
|
12
|
Yoshino O, Ono Y, Honda M, Hattori K, Sato E, Hiraoka T, Ito M, Kobayashi M, Arai K, Katayama H, Tsuchida H, Yamada-Nomoto K, Iwahata S, Fukushi Y, Wada S, Iwase H, Koga K, Osuga Y, Iwaoka M, Unno N. Relaxin-2 May Suppress Endometriosis by Reducing Fibrosis, Scar Formation, and Inflammation. Biomedicines 2020; 8:E467. [PMID: 33142814 PMCID: PMC7693148 DOI: 10.3390/biomedicines8110467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Relaxin (RLX)-2, produced by the corpus luteum and placenta, is known to be potentially effective in fibrotic diseases of the heart, lungs, kidneys, and bladder; however, its effectiveness in endometriosis has not yet been investigated. In the present study, we conducted a comprehensive study on the effect of RLX-2 on endometriosis. We checked the expressions of LGR-7, a primary receptor of RLX-2, in endometriomas using immunohistochemistry. Endometriotic stromal cells (ESCs) purified from surgical specimens were used in in vitro experiments. The effects of RLX-2 on ESCs were evaluated by quantitative-PCR, ELISA, and Western blotting. Gel contraction assay was used to assess the contraction suppressive effect of RLX-2. The effect of RLX-2 was also examined in the endometriosis mouse model. LGR-7 was expressed in endometriotic lesions. In ESCs, RLX-2 increased the production of cAMP and suppressed the secretion of interleukin-8, an inflammatory cytokine, by 15% and mRNA expression of fibrosis-related molecules, plasminogen activator inhibitor-1 (PAI-1), and collagen-I by approximately 50% (p < 0.05). In the gel contraction assay, RLX-2 significantly suppressed the contraction of ESCs, which was cancelled by removing RLX-2 from the medium or by adding H89, a Protein Kinase A (PKA) inhibitor. In ESCs stimulated with RLX-2, p38 MAPK phosphorylation was significantly suppressed. In the endometriosis mouse model, administration of RLX-2 significantly decreased the area of the endometriotic-like lesion with decreasing fibrotic component compared to non-treated control (p = 0.01). RLX-2 may contribute to the control of endometriotic lesion by suppressing fibrosis, scar formation, and inflammation.
Collapse
Affiliation(s)
- Osamu Yoshino
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Hokkaido 006-0811, Japan; (Y.O.); (Y.F.); (S.W.)
| | - Masako Honda
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Kyoko Hattori
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Erina Sato
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Masami Ito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Mutsumi Kobayashi
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Tokyo 259-1292, Japan; (K.A.); (M.I.)
| | - Hidekazu Katayama
- Department of Applied Biochemistry, Tokai University, Tokyo 259-1292, Japan;
| | - Hiroyoshi Tsuchida
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Kaori Yamada-Nomoto
- Department of Obstetrics and Gynecology, University of Toyama, Toyama 930-0194, Japan; (M.I.); (M.K.); (H.T.); (K.Y.-N.)
| | - Shunsuke Iwahata
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Yoshiyuki Fukushi
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Hokkaido 006-0811, Japan; (Y.O.); (Y.F.); (S.W.)
| | - Shinichiro Wada
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Hokkaido 006-0811, Japan; (Y.O.); (Y.F.); (S.W.)
| | - Haruko Iwase
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| | - Kaori Koga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan; (K.K.); (Y.O.)
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan; (K.K.); (Y.O.)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Tokyo 259-1292, Japan; (K.A.); (M.I.)
| | - Nobuya Unno
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa 252-0375, Japan; (M.H.); (K.H.); (E.S.); (T.H.); (S.I.); (H.I.); (N.U.)
| |
Collapse
|
13
|
Targeting proinsulin to local immune cells using an intradermal microneedle delivery system; a potential antigen-specific immunotherapy for type 1 diabetes. J Control Release 2020; 322:593-601. [DOI: 10.1016/j.jconrel.2020.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
|
14
|
|
15
|
Tanini D, Ricci L, Capperucci A. Rongalite‐Promotedon WaterSynthesis of Functionalised Tellurides and Ditellurides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Damiano Tanini
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Lorenzo Ricci
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
16
|
Zheng N, Karra P, VandenBerg MA, Kim JH, Webber MJ, Holland WL, Chou DHC. Synthesis and Characterization of an A6-A11 Methylene Thioacetal Human Insulin Analogue with Enhanced Stability. J Med Chem 2019; 62:11437-11443. [PMID: 31804076 PMCID: PMC7217704 DOI: 10.1021/acs.jmedchem.9b01589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin has been a life-saving drug for millions of people with diabetes. However, several challenges exist which limit therapeutic benefits and reduce patient convenience. One key challenge is the fibrillation propensity, which necessitates refrigeration for storage. To address this limitation, we chemically synthesized and evaluated a methylene thioacetal human insulin analogue (SCS-Ins). The synthesized SCS-Ins showed enhanced serum stability and aggregation resistance while retaining bioactivity compared with native insulin.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Michael A. VandenBerg
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Matthew J. Webber
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Danny Hung-Chieh Chou
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
17
|
Arai K, Matsunaga T, Ueno H, Akahoshi N, Sato Y, Chakrabarty G, Mugesh G, Iwaoka M. Modeling Thioredoxin Reductase-Like Activity with Cyclic Selenenyl Sulfides: Participation of an NH⋅⋅⋅Se Hydrogen Bond through Stabilization of the Mixed Se-S Intermediate. Chemistry 2019; 25:12751-12760. [PMID: 31390113 DOI: 10.1002/chem.201902230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/20/2019] [Indexed: 01/22/2023]
Abstract
At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se-S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se- ]) by reacting with a nearby dithiol motif ([SHCys59 ,SHCys64 ]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se-S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se-S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle. A model study that used synthetic selenenyl sulfides, which mimic the active site structure of human TrxR comprising Cys497, Sec498, and His472, suggested that His472 can play a key role by forming a hydrogen bond with the Se atom of the mixed Se-S intermediate to facilitate the second step. In addition, the selenenyl sulfides exhibited a defensive ability against H2 O2 -induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Takahiko Matsunaga
- Department of Chemistry, School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Haruhito Ueno
- Department of Chemistry, School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Nozomi Akahoshi
- Department of Chemistry, School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Yuumi Sato
- Department of Chemistry, School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Gaurango Chakrabarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
18
|
Iwaoka M, Mitsuji T, Shinozaki R. Oxidative folding pathways of bovine milk β-lactoglobulin with odd cysteine residues. FEBS Open Bio 2019; 9:1379-1391. [PMID: 31087497 PMCID: PMC6668375 DOI: 10.1002/2211-5463.12656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
Bovine β‐lactoglobulin (BLG) is a major whey protein with unique structural characteristics: it possesses a free Cys thiol (SH) and two disulfide (SS) bonds and consists of a β‐barrel core surrounded by one long and several short α helices. Although SS‐intact conformational folding has been studied in depth, the oxidative folding pathways and accompanying SS formation/rearrangement are poorly understood. In this study, we used trans‐3,4‐dihydroxyselenolane oxide, a water‐soluble selenoxide reagent which undergoes rapid and quantitative SS formation, to determine the oxidative folding pathways of BLG variant A (BLGA) at pH 8.0 and 25 °C. This was done by characterizing two key one‐SS intermediates, a particular folding intermediate having a Cys66–Cys160 SS bond (I‐1) and a particular folding intermediate having a Cys106–Cys119 SS bond (I‐2), which have a native Cys66–Cys160 and Cys106–Cys119 SS bond, respectively. In the major folding pathway, the reduced protein (R) with abundant α helices was oxidized to I‐1, which was then transformed to I‐2 through SS rearrangement. The native protein (N) was formed by oxidation of I‐2. The redundant Cys121 thiol facilitates SS rearrangement. N is also generated from an ensemble of folding intermediates having two SS bonds (2SS) intermediates with scrambled SS bonds through SS rearrangement, but this minor pathway is deteriorative due to aggregation or overoxidation of 2SS. During oxidative folding of BLGA, α→β conformational transition occurred as previously observed in SS‐intact folding. These findings are informative not only for elucidating oxidative folding pathways of other members of the β‐lactoglobulin family, but also for understanding the roles of a redundant Cys thiol in the oxidative folding process of a protein with odd Cys residues.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Takumi Mitsuji
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Reina Shinozaki
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| |
Collapse
|
19
|
Abstract
trans-3,4-Dihydroxyselenolane oxide (DHSox), a water-soluble cyclic selenoxide reagent, is useful for rapid and quantitative formation of disulphide (SS) bonds in a reduced state of SS-containing proteins because the selenoxide is a strong but selective oxidant for thiol substrates (RSH) in a wide range of pH. Due to this advantage over common disulphide reagents, such as oxidized dithiothreitol (DTTox) and glutathione (GSSG), DHSox enables clear characterization of oxidative folding pathways of proteins. DHSox is also useful for facile diagnosis of weakly folded structure, or reactivity (i.e., pKa) of the thiols, present in a reduced polypeptide chain and the partially oxidized folding intermediates, identification of the key SS intermediates that can be oxidized directly to the native state, and preparation of SS-scrambled misfolded protein species. In this chapter, these diverse utilities of DHSox in protein folding study are demonstrated.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan.
| |
Collapse
|
20
|
Katayama H, Mukainakano T, Kogure J, Ohira T. Chemical synthesis of the crustacean insulin-like peptide with four disulfide bonds. J Pept Sci 2018; 24:e3132. [PMID: 30346100 DOI: 10.1002/psc.3132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Abstract
Among the insulin-family peptides, two additional cysteine residues other than six conserved cysteines are sometimes found in invertebrate insulin-like peptides (ILPs), although the synthetic method for such four disulfide ILPs has not yet been well established. In this study, we synthesized a crustacean insulin-like androgenic gland factor with four disulfides by the regioselective disulfide bond formation reactions using four orthogonal Cys-protecting groups. Its disulfide isomer could be also synthesized by the same method, indicating that the synthetic strategy developed in this study might be useful for the synthesis of other four disulfide ILPs.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Takafumi Mukainakano
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Junya Kogure
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| |
Collapse
|