1
|
Dos Santos Silva Araújo L, Lazzara G, Chiappisi L. Thermoresponsive behavior of cyclodextrin inclusion complexes with weakly anionic alkyl ethoxy carboxylates. SOFT MATTER 2023; 19:1523-1530. [PMID: 36727568 DOI: 10.1039/d2sm01621d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study investigates the temperature responsive behavior of inclusion complexes formed by weakly anionic alkyl ethoxy carboxylates and α (αCD) and β-cyclodextrins (βCD). Small-angle neutron scattering (SANS) was performed to probe the structural behaviour at the 1-100 nanometer scale of the hierarchical assemblies at different temperatures. The phase transitions and thermodynamics were systematically monitored as a function of the degree of ionization of the surfactant by differential scanning calorimetry (DSC). Herein, we investigate the effect of the surfactant degree of ionization on the thermoresponsive properties of the inclusion complex supramolecular assemblies. Inclusion complexes formed with the ionized surfactant spontaneously assemble into multilayered structures, which soften with increasing temperature. We also found that the presence of charges is not only required to impart order to the supramolecular assemblies, but also induced in-plane crystallization of the inclusion complexes. Finally, the use of a weakly anionic surfactant allows us to probe the interplay between the charge density and temperature on the assembly of surfactant-cyclodextrin inclusion complexes. This study helps to improve the design of multi-responsive supramolecular systems based on cyclodextrins.
Collapse
Affiliation(s)
- Larissa Dos Santos Silva Araújo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128, Palermo, Italy
- Institut Max von Laue-Paul Langevin, 71 avenue des Martyrs, 38042, Grenoble, France.
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128, Palermo, Italy
| | - Leonardo Chiappisi
- Institut Max von Laue-Paul Langevin, 71 avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
2
|
Garreau C, Chiappisi L, Micciulla S, Morfin I, Trombotto S, Delair T, Sudre G. Preparation of highly stable and ultrasmooth chemically grafted thin films of chitosan. SOFT MATTER 2023; 19:1606-1616. [PMID: 36752562 DOI: 10.1039/d3sm00003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings. In detail, chitosan films with a low degree of N-acetylation and of thicknesses varying from 40 nm to 10 μm were grafted onto epoxy-functionalized silicon wafers via an optimized water-temperature treatment (WTT). The formation of a grafted chitosan network insoluble in acidic aqueous media (pH 3.5) was evidenced and the films were stable for at least 2 days at pH 3.5. The film morphology and the swelling behavior were characterized by atomic force microscopy (AFM) and neutron reflectivity, which showed that the film roughness was extremely low. The physical cross-linking of the films was demonstrated using infrared spectroscopy, dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Finally, we show that the swelling behavior of such films was largely influenced by the environmental conditions, such as the pH or ionic strength of the solution.
Collapse
Affiliation(s)
- Cyrielle Garreau
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Leonardo Chiappisi
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble F-38000, Cedex 9, France
| | - Samantha Micciulla
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble F-38000, Cedex 9, France
| | - Isabelle Morfin
- LIPhy, Université Grenoble Alpes CNRS, UMR 5588, 140 Avenue de la Physique, Saint Martin d'Hères F-38402, France
| | - Stéphane Trombotto
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Thierry Delair
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Guillaume Sudre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| |
Collapse
|
3
|
Chiappisi L, Hoffmann I, Gradzielski M. Membrane stiffening in Chitosan mediated multilamellar vesicles of alkyl ether carboxylates. J Colloid Interface Sci 2022; 627:160-167. [PMID: 35842966 DOI: 10.1016/j.jcis.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS Membrane undulations are known to strongly affect the stability of uni- and multilamellar vesicles formed by surfactants or phospholipids. Herein, based on the same arguments, we hypothesise that the properties of polyelectrolyte mediated surfactant multilamellar vesicles, in particular the multiplicity - i.e. the number of layers forming the vesicle - depend on the dynamics of the membrane. EXPERIMENTS Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) were used to probe the structure and the dynamics of the multilayered vesicles formed in mixtures of the biopolymer chitosan and oppositely charged alkyl ether carboxylates. The neutron scattering data are complemented by static and dynamic light scattering experiments. Experiments were performed in polyelectrolyte excess conditions, and at a pH close to the pKa of the surfactant. FINDINGS The structural investigation shows very clearly that multilayered surfactant/polyelectrolyte vesicles are formed in the investigated mixtures. Only 3 to 5 layers form, on average, one vesicle, as similarly found in mixtures of chitosan and phospholipid vesicles. NSE shows that the surfactant membrane becomes stiffer upon complexation with chitosan, and that the fluctuation of the layers is strongly coupled in time and space. Such strong coupling and the increase in overall stiffness is associated with a high entropic cost. Accordingly, the combined SANS and NSE study points out that the low multiplicity found in multilayered vesicles involving the rigid polysaccharide chitosan arises from the strongly coupled dynamics of the membrane layers.
Collapse
Affiliation(s)
- Leonardo Chiappisi
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Strasse des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany; Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs 38042 Grenoble Cedex 9, France.
| | - Ingo Hoffmann
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs 38042 Grenoble Cedex 9, France.
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Strasse des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany.
| |
Collapse
|
4
|
Veldscholte LB, de Beer S. OpenHumidistat: Humidity-controlled experiments for everyone. HARDWAREX 2022; 11:e00288. [PMID: 35509938 PMCID: PMC9058855 DOI: 10.1016/j.ohx.2022.e00288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Humidity control is a crucial element for a wide variety of experiments. Yet, often naive methods are used that do not yield stable regulation of the humidity, are slow, or are inflexible. PID-based electropneumatic humidistats solve these problems, but commercial devices are not widespread, typically proprietary and/or prohibitively expensive. Here we describe OpenHumidistat: a free and open-source humidistat for laboratory-scale humidity control that is affordable (€500) and easy to build. The design is based around mixing a humid and dry air flow in varying proportions, using proportional solenoid valves and flow sensors to control flow rates. The mixed flow is led into a measurement chamber, which contains a humidity sensor to provide feedback to the controller, to achieve closed-loop humidity control.
Collapse
Key Words
-
K
d
, Derivative gain
-
K
ff
, Feed-forward gain
-
K
i
, Integral gain
-
K
p
, Proportional gain
-
V
˙
, (Volumetric) flowrate
- ADC, Analog-to-digital converter
- CC, Creative Commons
- CERN OHL, CERN Open Hardware License
- CV, Control variable
- Controller
- DC, Direct current
- DI, Deionized (water)
- EDA, Electronic design automation
- Electronics
- FC, Flow controller
- FCE, Final control element
- GNU GPL, GNU General Public License
- HC, Humidity controller
- Humidity
- I/O, Input/output
- IC, Integrated circuit
- MOSFET, Metal-oxide-semiconductor field-effect transistor
- PCB, Printed circuit board
- PID
- PID, Proportional, integral, derivative (control)
- PU, Poly(urethane)
- PV, Process variable
- PVC, Poly(vinyl chloride)
- PWM, Pulse-width modulation
- Pneumatics
- RAM, Random-access memory
- SMT, Surface-mount technology
- SP, Setpoint
- THT, Through-hole technology
- UI, User interface
- VCCS, Voltage-controlled current sink
Collapse
Affiliation(s)
- Lars B. Veldscholte
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Mullen E, Morris MA. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1085. [PMID: 33922231 PMCID: PMC8146645 DOI: 10.3390/nano11051085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to current reliance upon large amounts of solvents, acids and gases that have numerous toxicological impacts. Management and assessment of hazardous chemicals is complicated by trade secrets and continual rapid change in the electronic manufacturing process. Of the many subprocesses involved in chip manufacturing, lithographic processes are of particular concern. Current developments in bottom-up lithography, such as directed self-assembly (DSA) of block copolymers (BCPs), are being considered as a next-generation technology for semiconductor chip production. These nanofabrication techniques present a novel opportunity for improving the sustainability of lithography by reducing the number of processing steps, energy and chemical waste products involved. At present, to the extent of our knowledge, there is no published life cycle assessment (LCA) evaluating the environmental impact of new bottom-up lithography versus conventional lithographic techniques. Quantification of this impact is central to verifying whether these new nanofabrication routes can replace conventional deposition techniques in industry as a more environmentally friendly option.
Collapse
Affiliation(s)
- Eleanor Mullen
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| | - Michael A. Morris
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| |
Collapse
|
6
|
Veldscholte LB, Horst RJ, de Beer S. Design, construction, and testing of an accurate low-cost humidistat for laboratory-scale applications. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:48. [PMID: 33818666 PMCID: PMC8021525 DOI: 10.1140/epje/s10189-021-00062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 06/02/2023]
Abstract
Stable and precise control of humidity is imperative for a wide variety of experiments. However, commercially available humidistats (devices that maintain a constant humidity) are often prohibitively expensive. Here, we present a simple yet effective humidistat for laboratory-scale applications that can be easily and affordably (<€250) constructed based on an Arduino Uno as microcontroller, a set of proportional miniature solenoid valves, a gas washing bottle, and a humidity sensor. The microcontroller implements a PID controller that regulates the ratio of a dry and humid airflow. The design and implementation of the device, including a custom driver circuit for the solenoids, are described in detail, and the firmware is freely available online. Finally, we demonstrate its proper operation and performance through step response and long-term stability tests, which shows settling times of approx. 30 s and an attainable relative humidity range of 10-95.
Collapse
Affiliation(s)
- Lars B Veldscholte
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Rens J Horst
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
7
|
Cavallaro G, Micciulla S, Chiappisi L, Lazzara G. Chitosan-based smart hybrid materials: a physico-chemical perspective. J Mater Chem B 2021; 9:594-611. [PMID: 33305783 DOI: 10.1039/d0tb01865a] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chitosan is one of the most studied cationic polysaccharides. Due to its unique characteristics of being water soluble, biocompatible, biodegradable, and non-toxic, this macromolecule is highly attractive for a broad range of applications. In addition, its complex behavior and the number of ways it interacts with different components in a system result in an astonishing variety of chitosan-based materials. Herein, we present recent advances in the field of chitosan-based materials from a physico-chemical perspective, with focus on aqueous mixtures with oppositely charged colloids, chitosan-based thin films, and nanocomposite systems. In this review, we focus our attention on the physico-chemical properties of chitosan-based materials, including solubility, mechanical resistance, barrier properties, and thermal behaviour, and provide a link to the chemical peculiarities of chitosan, such as its intrinsic low solubility, high rigidity, large charge separation, and strong tendency to form intra- and inter-molecular hydrogen bonds.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
8
|
Crivello C, Lazzara G, Chiappisi L. On the effect of the nature of counterions on the self-assembly of polyoxyethylene alkyl ether carboxylic acids. SOFT MATTER 2020; 16:7137-7143. [PMID: 32662480 DOI: 10.1039/d0sm00986e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this contribution, we investigate the effect of the type of counterion on the properties of dilute solutions of polyoxyethylene alkyl ether carboxylic acids. Two different surfactants, presenting an oleic acid alkyl chain and on-average five and nine ethylene oxide units, and terminated by a weakly anionic carboxymethyl group were studied. The surfactants were gradually ionized with sodium hydroxide, arginine, and choline hydroxide. The solutions properties were probed by light scattering, electrophoretic mobility, density and sound velocity measurements, as well as by small-angle neutron scattering. To our initial surprise, no specific effect arising from the nature of the counterion could be determined. We ascribe this phenomenon to the fact that the presence of the ethylene oxide units markedly dilutes the surfactant head group charge density, reducing counterion condensation and subsequent counterion specific effects.
Collapse
Affiliation(s)
- Chiara Crivello
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France. and Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy
| | - Leonardo Chiappisi
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
9
|
Abstract
Over the last 10 years, neutron reflectometry (NR) has emerged as a powerful technique for the investigation of biologically relevant thin films. The great advantage of NR with respect to many other surface-sensitive techniques is its sub-nanometer resolution that enables structural characterizations at the molecular level. In the case of bio-relevant samples, NR is non-destructive and can be used to probe thin films at buried interfaces or enclosed in bulky sample environment equipment. Moreover, recent advances in biomolecular deutera-tion enabled new labeling strategies to highlight certain structural features and to resolve with better accuracy the location of chemically similar molecules within a thin film.
In this chapter I will describe some applications of NR to bio-relevant samples and discuss some of the data analysis approaches available for biological thin films. In particular, examples on the structural characterization of biomembranes, protein films and protein-lipid interactions will be described.
Collapse
|