1
|
Takeda Y. Modulating the Photophysical Properties of Twisted Donor-Acceptor-Donor π-Conjugated Molecules: Effect of Heteroatoms, Molecular Conformation, and Molecular Topology. Acc Chem Res 2024; 57:2219-2232. [PMID: 39046948 PMCID: PMC11308373 DOI: 10.1021/acs.accounts.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
ConspectusModulating the photophysical properties of organic emitters through molecular design is a fundamental endeavor in materials science. A critical aspect of this process is the control of the excited-state energy, which is essential for the development of triplet exciton-harvesting organic emitters, such as those with thermally activated delayed fluorescence and room-temperature phosphorescence. These emitters are pivotal for developing highly efficient organic light-emitting diodes and bioimaging probes. A particularly promising class of these emitters consists of twisted donor-acceptor organic π-conjugated scaffolds. These structures facilitate a spatial separation of the frontier molecular orbitals, which is crucial for achieving a narrow singlet-triplet energy gap. This narrow gap is necessary to overcome the endothermic reverse intersystem crossing process, enhancing the efficiency of thermally activated delayed fluorescence. To precisely modulate the photophysical properties of these emitting materials, it is essential to understand the electronic structures of new donor-acceptor scaffolds, especially those influenced by heteroatoms, as well as their conformations and topologies. This understanding not only improves the efficiency of these emitters but also expands their potential applications in advance technologies.In 2014, the Takeda group made a significant breakthrough by discovering a novel method for synthesizing U-shaped diazaacenes (dibenzo[a,j]phenazine) through an oxidative skeletal rearrangement of 1,1'-binaphthalene-2,2'-diamines. This class of compounds is typically challenging to synthesize using conventional organic reactions. The resulting unique geometric and electronic structure of U-shaped diazaacenes opened new possibilities for photophysical applications. Leveraging the U-shaped structure, photoluminescent properties, and high electron affinity, we developed twisted donor-acceptor-donor compounds. These compounds exhibit efficient thermally activated delayed fluorescence, stimuli-responsive luminochromism, heavy atom-free room-temperature phosphorescence, and anion-responsive red shifts. These innovative emitters have demonstrated significant potential in various practical applications, including organic light-emitting diode devices and advanced sensing systems.In this Account, I summarize our achievements in modulating the photofunctions of dibenzo[a,j]phenazine-cored twisted donor-acceptor-donor compounds by controlling excited-state singlet-triplet energy gaps through conformational regulation. Our comprehensive studies revealed the significant impact of heteroatoms, molecular conformations, and topologies on the photophysics of these compounds. These findings highlight the importance of molecular engineering in tailoring the photophysical properties of organic donor-acceptor π-conjugated materials for specific applications. Our research has demonstrated that incorporating heteroatoms into the molecular framework effectively tunes the electronic properties and, consequently, the photophysical behavior of the compounds. Understanding the influence of heteroatoms, conformational dynamics, and molecular topology on excited-state behavior will open new avenues for next-generation optoelectronic devices and biological technologies. These advancements include ultra-low-power displays, photonic communication, and super-resolution biomedical imaging. Ultimately, our work highlights the potential of strategic molecular design in driving innovation across various fields, paving the way for the development of cutting-edge technologies that leverage the unique properties of organic emitters.
Collapse
Affiliation(s)
- Youhei Takeda
- Department of Applied Chemistry, Graduate
School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Hashikawa Y, Sadai S, Ikemoto Y, Murata Y. Open-[60]fullerenols with water adsorbed both inside and outside. Chem Commun (Camb) 2024; 60:1261-1264. [PMID: 38180526 DOI: 10.1039/d3cc05542f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The water affinity on [60]fullerenols was found to be governed by surface electrostatic potential while water aggregation is initiated by the hydroxy groups attached on the carbon surface. The molecular water adsorption at the internal sphere caused a significnat inhibition of water adsorption at the external carbon surface.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shumpei Sadai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Heo YJ, Lee JH, Kim SH, Mun SJ, Lee SY, Park SJ. Paper-Derived Millimeter-Thick Yarn Supercapacitors Enabling High Volumetric Energy Density. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42671-42682. [PMID: 36043943 DOI: 10.1021/acsami.2c10746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solid-state supercapacitors have shown extraordinary promise for flexible and wearable electronics. To date, they are still limited by relatively poor energy volumetric performances, which are largely determined by the pore structures and physicochemical properties of electrode materials. Moreover, the poor mechanical properties afforded because of the intrinsic shortcomings of electrode materials need to be resolved. Herein, we designed a flexible and solid-state yarn electrode with high porosity and high affinity toward electrolytes using poly(3,4-ethylenedioxythiophene) (PEDOT) and Korean heritage paper (KHP). To maximize the volumetric capacitive energy storage, PEDOT-loaded conductive KHP sheets (two-dimensional) were transformed into a biscrolled yarn (one-dimensional) via simple twisting. The volumetric capacitance of the biscrolled yarn supercapacitors with 1 mm cell diameter exhibited a volumetric specific capacitance of ∼6576 mF/cm3 at a scan rate of 25 mV/s, which is attributable to the high mass loading of PEDOT as a conductive support and increased packing density. Moreover, multiple optimized yarn supercapacitors can be connected to yield a total length of 1 m, demonstrating enormous potential as a portable and wearable power supply for operating smartwatches.
Collapse
Affiliation(s)
- Young-Jung Heo
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea
| | - Seong-Hwang Kim
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea
| | - Seong-Jun Mun
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Chen Q, Zhang T, Chen X, Liang M, Zhao H, Yuan P, Han Y, Li CP, Hao J, Xue P. Tunable Fluorescence in Two-Component Hydrogen-Bonded Organic Frameworks Based on Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24509-24517. [PMID: 35588507 DOI: 10.1021/acsami.2c05897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A dumbbell-shaped compound (TPAD) with four 2,4-diaminotriazine moieties as H-bond units and a benzene ring as a bridge group was found to form hydrogen-bonded organic frameworks (HOFs) with strong cyan fluorescence. An energy acceptor, 6,6',6″,6‴-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis-(4,1-phenylene))bis(azanetriyl))tetrakis(benzene-4,1-diyl))tetrakis(1,3,5-triazine-2,4-diamine) (BTAD), with the same molecular skeleton as TPAD and a longer emission wavelength could homogeneously distribute within the framework of TPAD through occupying the locations of TPAD. As a result, two-component HOFs (TC-HOFs) were formed. The nonradiative energy transfer from TPAD as the donor to BTAD as the acceptor happens within frameworks owing to the efficient spectral overlap between the emission of TPAD and the absorption of BTAD. Moreover, the emission wavelengths and colors of TC-HOFs could be easily and continuously modulated by the content of the acceptor. The fluorescence color changed from cyan to orange when the content of BTAD gradually increased. This finding affirms that TC-HOFs with continuously adjustable composition can be constructed from two molecules with the same molecular skeleton, and highly efficient nonradiative energy transfer may happen in porous TC-HOFs. To the best of our knowledge, these TC-HOFs are the first example of TC-HOFs involved in energy transfer.
Collapse
Affiliation(s)
- Qiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Tong Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyu Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Meng Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengfei Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yanning Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jingjun Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
5
|
A New Entry to Purely Organic Thermally Activated Delayed Fluorescence Emitters Based on Pyrido[2,3‐b]pyrazine–Dihydrophenazasilines Donor–Acceptor Dyad. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Xue PC, Chen Q, Chen X, Han Y, Liang M. Luminescent organic porous crystals from non-cyclic molecules and their applications. CrystEngComm 2022. [DOI: 10.1039/d1ce01702k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic porous crystals from small and non-cyclic organic molecules can be constructed by various intermolecular weak interactions. Owing to their precise stacking types, intermolecular interaction and pore microstructure, the relationship...
Collapse
|
7
|
Yamagishi H, Tsunoda M, Iwai K, Hengphasatporn K, Shigeta Y, Sato H, Yamamoto Y. Solvophobicity-directed assembly of microporous molecular crystals. Commun Chem 2021; 4:122. [PMID: 36697783 PMCID: PMC9814291 DOI: 10.1038/s42004-021-00561-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/06/2021] [Indexed: 01/28/2023] Open
Abstract
Dense packing is a universal tendency of organic molecules in the solid state. Typical porous crystals utilize reticular strong intermolecular bonding networks to overcome this principle. Here, we report a solvophobicity-based methodology for assembling discrete molecules into a porous form and succeed in synthesizing isostructural porous polymorphs of an amphiphilic aromatic molecule Py6Mes. A computational analysis of the crystal structure reveals the major contribution of dispersion interaction as the driving force for assembling Py6Mes into a columnar stacking while the columns are sterically salient and form nanopores between them. The porous packing is facilitated particularly in solvents with weak dispersion interaction due to the solvophobic effect. Conversely, solvents with strong dispersion interaction intercalate between Py6Mes due to the solvophilic effect and provide non-porous inclusion crystals. The solvophobicity-directed polymorphism is further corroborated by the polymorphs of Py6Mes-analogues, m-Py6Mes and Ph6Mes.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Department of Materials Science, Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Monika Tsunoda
- Department of Materials Science, Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kohei Iwai
- Department of Materials Science, Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Yohei Yamamoto
- Department of Materials Science, Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Vapochromism of Organic Crystals Based on Macrocyclic Compounds and Inclusion Complexes. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vapochromic materials, which change color and luminescence when exposed to specific vapors and gases, have attracted considerable attention in recent years owing to their potential applications in a wide range of fields such as chemical sensors and environmental monitors. Although the mechanism of vapochromism is still unclear, several studies have elucidated it from the viewpoint of crystal engineering. In this mini-review, we investigate recent advances in the vapochromism of organic crystals. Among them, macrocyclic molecules and inclusion complexes, which have apparent host–guest interactions with analyte molecules (specific vapors and gases), are described. When the host compound is properly designed, its cavity size and symmetry change in response to guest molecules, influencing the optical properties by changing the molecular inclusion and recognition abilities. This information highlights the importance of structure–property relationships resulting from the molecular recognition at the solid–vapor interface.
Collapse
|