1
|
Cao Y, Scholte A, Prehm M, Anders C, Chen C, Song J, Zhang L, He G, Tschierske C, Liu F. Understanding the Role of Trapezoids in Honeycomb Self-Assembly-Pathways between a Columnar Liquid Quasicrystal and its Liquid-Crystalline Approximants. Angew Chem Int Ed Engl 2024; 63:e202314454. [PMID: 38009676 DOI: 10.1002/anie.202314454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Quasiperiodic patterns and crystals-having long range order without translational symmetry-have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections. In the perspective of tiling patterns, the presence of unique trapezoidal tiles, consisting of three rigid sides formed by the p-terphenyls and one shorter, incommensurate, and adjustable side by the alkyl end chains, plays a crucial role for these phases. A delicate temperature-dependent balance between conformational, entropic and space-filling effects determines the role of the alkyl chains, either as network nodes or trapezoid walls, thus resulting in the order-disorder transitions associated with emergence of quasiperiodicity. In-depth analysis suggests a change from a quasiperiodic tiling involving trapezoids to a modified one with a contribution of trapezoid pair fusion. This work paves the way for understanding quasiperiodicity emergence and develops fundamental concepts for its generation by chemical design of non-spherical molecules, aggregates, and frameworks based on dynamic reticular chemistry.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Alexander Scholte
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Marko Prehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Christian Anders
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Changlong Chen
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangxuan Song
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang He
- Frontier Institute for Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Anders C, Wagner M, Alaasar M, Fischer VM, Waldecker R, Zhao Y, Tan T, Cao Y, Liu F, Tschierske C. Highly branched bolapolyphilic liquid crystals with a cubic A15 network at the triangle-square transition. Chem Commun (Camb) 2024; 60:1023-1026. [PMID: 38173419 DOI: 10.1039/d3cc05247h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Rod-like bolapolyphiles with highly branched carbosilane-based side-chains self-assemble into several honeycomb structures if the oligo(p-phenylene ethynylene) core is polyfluorinated, whereas for the non-fluorinated series an A15 type cubic network of rod-bundles was observed instead, suggesting a brand new pathway for the transition between triangular and square honeycomb phases.
Collapse
Affiliation(s)
- Christian Anders
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle 06120, Germany.
| | - Matthias Wagner
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle 06120, Germany.
| | - Mohamed Alaasar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle 06120, Germany.
| | - Virginia-Marie Fischer
- Institute of Mathematics, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Str. 5, Halle 06120, Germany
| | - Rebecca Waldecker
- Institute of Mathematics, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Str. 5, Halle 06120, Germany
| | - Yangyang Zhao
- Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tianyi Tan
- Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yu Cao
- Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle 06120, Germany.
| |
Collapse
|
3
|
Zeng X, Glettner B, Baumeister U, Chen B, Ungar G, Liu F, Tschierske C. A columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells. Nat Chem 2023; 15:625-632. [PMID: 36959511 DOI: 10.1038/s41557-023-01166-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
Quasicrystals are intriguing structures that have long-range positional correlations but no periodicity in real space, and typically with rotational symmetries that are 'forbidden' in conventional periodic crystals. Here, we present a two-dimensional columnar liquid quasicrystal with dodecagonal symmetry. Unlike previous dodecagonal quasicrystals based on random tiling, a honeycomb structure based on a strictly quasiperiodic tessellation of tiles is observed. The structure consists of dodecagonal clusters made up of triangular, square and trapezoidal cells that are optimal for local packing. To maximize the presence of such dodecagonal clusters, the system abandons periodicity but adopts a quasiperiodic structure that follows strict packing rules. The stability of random-tiling dodecagonal quasicrystals is often attributed to the entropy of disordering when strict tiling rules are broken, at the sacrifice of the long-range positional order. However, our results demonstrate that quasicrystal stability may rest on energy minimization alone, or with only minimal entropic intervention.
Collapse
Affiliation(s)
- Xiangbing Zeng
- Department of Materials Science and Engineering, Sheffield University, Sheffield, UK.
| | - Benjamin Glettner
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Ute Baumeister
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Bin Chen
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Goran Ungar
- Department of Materials Science and Engineering, Sheffield University, Sheffield, UK
- Shaanxi International Research Centre for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Liu
- Shaanxi International Research Centre for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
4
|
Chen C, Poppe M, Poppe S, Wagner M, Tschierske C, Liu F. Tetrahedral Liquid-Crystalline Networks: An A15-Like Frank-Kasper Phase Based on Rod-Packing. Angew Chem Int Ed Engl 2022; 61:e202203447. [PMID: 35470526 PMCID: PMC9321821 DOI: 10.1002/anie.202203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/10/2022]
Abstract
The Pm 3 ‾ n cubic and other low-symmetry Frank-Kasper phases are known to be formed by soft spheres, ranging from metals to block copolymer micelles and colloidal nanoparticles. Here, we report a series of X-shaped polyphiles composed of sticky rods and two non-symmetric branched side-chains, which self-assemble into the first example of a cubic liquid-crystalline phase representing a tetrahedral network of rods with a Pm 3 ‾ n lattice. It is the topological dual to the Weaire-Phelan foam, being the Voronoi tessellation of the A15 sphere packing, from which this network is obtained by Delaunay triangulation.
Collapse
Affiliation(s)
- Changlong Chen
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behaviour of MaterialsXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Marco Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Silvio Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Matthias Wagner
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Carsten Tschierske
- Department of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes Str. 206120Halle/SaaleGermany
| | - Feng Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behaviour of MaterialsXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
5
|
Saeed A, Poppe M, Wagner MB, Hauche S, Anders C, Cao Y, Zhang L, Tschierske C, Liu F. The rhombic honeycomb - a new mode of self-assembly in liquid crystalline soft matter. Chem Commun (Camb) 2022; 58:7054-7057. [PMID: 35648051 DOI: 10.1039/d2cc01907h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rod-like liquid crystalline (LC) polyphilic compounds with a linear oligo(phenyleneethynylene) core, sticky glycerol groups at each end and two long alkyl side chains (C20-C32) at opposite sides form rhombic honeycombs with inner angles around 60/120°, occurring between triangular and square tiling patterns.
Collapse
Affiliation(s)
- Azhar Saeed
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Marco Poppe
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Matthias B Wagner
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Sebastian Hauche
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Christian Anders
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China. .,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
6
|
Chen C, Poppe M, Poppe S, Wagner M, Tschierske C, Liu F. Tetrahedral Liquid‐Crystalline Networks: An A15‐Like Frank–Kasper Phase Based on Rod‐Packing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changlong Chen
- Shaanxi International Research Center for Soft Matter State Key Laboratory for Mechanical Behaviour of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Marco Poppe
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Silvio Poppe
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Matthias Wagner
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Carsten Tschierske
- Department of Chemistry Martin Luther University Halle-Wittenberg Kurt-Mothes Str. 2 06120 Halle/Saale Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter State Key Laboratory for Mechanical Behaviour of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
7
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Suzuki J, Suzuki M, Takano A, Matsushita Y. Cylindrical Super‐Lattice Structures with Three‐Contrasts from Pentablock Binary Blends Studied by Monte Carlo Simulation. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiro Suzuki
- Computing Research Center High Energy Accelerator Research Organization (KEK) Oho 1, Tsukuba Ibaraki 305‐0031 Japan
- Information System Section J‐PARC Center, 2‐4, Shirane Shirakata, Tokai‐mura, Naka‐gun Ibaraki 319‐1195 Japan
| | - Makoto Suzuki
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku, Nagoya Aichi 464‐8603 Japan
| | - Atsushi Takano
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku, Nagoya Aichi 464‐8603 Japan
| | - Yushu Matsushita
- Fellow Division Toyota Physical and Chemical Research Institute 41‐1, Yokomichi, Nagakute Aichi 480‐1192 Japan
| |
Collapse
|
9
|
Poppe M, Chen C, Liu F, Poppe S, Tschierske C. Emergence of uniform tilt and π-stacking in triangular liquid crystalline honeycombs. Chem Commun (Camb) 2021; 57:6526-6529. [PMID: 34105554 DOI: 10.1039/d1cc02556b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synclinic tilted organization of specifically designed polyphilic oligo(p-phenylene ethynylene) rods in cylindrical shells around triangular prismatic cells on the <5 nm scale leads to a new kind of liquid crystalline honeycomb composed of helical shells with alternating helix sense. Core fluorination at the outer ring modifies the core-core interactions, thus resulting in triangular arrays with face-to-face π-stacking along the honeycomb.
Collapse
Affiliation(s)
- Marco Poppe
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Changlong Chen
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Silvio Poppe
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.
| |
Collapse
|
10
|
Poppe M, Chen C, Poppe S, Kerzig C, Liu F, Tschierske C. Different Modes of Deformation of Soft Triangular Honeycombs at the Sub-5 nm Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005070. [PMID: 33063389 DOI: 10.1002/adma.202005070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Patterning on the sub-5 nm length scale is a contemporary challenge for further miniaturization of microelectronic circuits. Here, the first soft self-assembled triangular patterns are reported showing transitions between regular and two different kinds of isosceles (acute and obtuse angled) triangles on this length scale, formed by liquid crystalline honeycombs of polyphilic block molecules involving a fluorinated oligo(para-phenylene ethynylene) core. The type of formed triangular pattern depends on the degree and position of fluorination and on temperature. They are the first soft honeycombs combining tilted and nontilted organizations in a uniform nanostructure, where the tilted molecules in only one or two sides of the triangular prismatic cells dominate the shape and the size of the morphology.
Collapse
Affiliation(s)
- Marco Poppe
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| | - Changlong Chen
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Silvio Poppe
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| | - Christoph Kerzig
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Carsten Tschierske
- Department of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Str. 2, Halle/Saale, D-06108, Germany
| |
Collapse
|