1
|
Ben Brahim N, Touaiti S, Sellés J, Lambry JC, Negrerie M. The control of nitric oxide dynamics and interaction with substituted zinc-phthalocyanines. Dalton Trans 2024; 53:772-780. [PMID: 38086651 DOI: 10.1039/d3dt03356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Phthalocyanines are artificial macrocycles that can harbour a central metal atom with four symmetric coordinations. Similar to metal-porphyrins, metal-phthalocyanines (M-PCs) may bind small molecules, especially diatomic gases such as NO and O2. Furthermore, various chemical chains can be grafted at the periphery of the M-PC macrocycle, which can change its properties, including the interaction with diatomic gases. In this study, we synthesized Zn-PCs with two different substituents and investigated their effects on the interaction and dynamics of nitric oxide (NO). Time-resolved absorption spectroscopy from picosecond to millisecond revealed that NO dynamics dramatically depends on the nature of the groups grafted to the Zn-PC macrocycle. These experimental results were rationalized by DFT calculations, which demonstrate that electrostatic interactions between NO and the quinoleinoxy substituent modify the potential energy surface and decrease the energy barrier for NO recombination, thus controlling its affinity.
Collapse
Affiliation(s)
- Nassim Ben Brahim
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Bd. de l'Environnement, 5019 Monastir, Tunisia
| | - Sarra Touaiti
- Laboratoire de Chimie Organique et Analytique, Institut Supérieur de l'Education et de la Formation Continue, 2000 Bardo, Tunisia
| | - Julien Sellés
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Micro-Algues, UMR 7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR-7645, Ecole Polytechnique, Palaiseau, France.
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR-7645, Ecole Polytechnique, Palaiseau, France.
| |
Collapse
|
2
|
Yoo BK, Kruglik SG, Lambry JC, Lamarre I, Raman CS, Nioche P, Negrerie M. The H-NOX protein structure adapts to different mechanisms in sensors interacting with nitric oxide. Chem Sci 2023; 14:8408-8420. [PMID: 37564404 PMCID: PMC10411614 DOI: 10.1039/d3sc01685d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Some classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O2 for some of them. The signaling pathways where these proteins act as NO or O2 sensors appear various and are fully established for only some species. Here, we investigated the reactivity of H-NOX from bacterial species toward NO with a mechanistic point of view using time-resolved spectroscopy. The present data show that H-NOXs modulate the dynamics of NO as a function of temperature, but in different ranges, changing its affinity by changing the probability of NO rebinding after dissociation in the picosecond time scale. This fundamental mechanism provides a means to adapt the heme structural response to the environment. In one particular H-NOX sensor the heme distortion induced by NO binding is relaxed in an ultrafast manner (∼15 ps) after NO dissociation, contrarily to other H-NOX proteins, providing another sensing mechanism through the H-NOX domain. Overall, our study links molecular dynamics with functional mechanism and adaptation.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - Sergei G Kruglik
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS 75005 Paris France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - C S Raman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore Maryland 21201 USA
| | - Pierre Nioche
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, UMR S1124, Centre Universitaire des Saints-Pères, Université Paris Descartes 75006 Paris France
- Structural and Molecular Analysis Platform, BioMedTech Facilities, INSERM US36-CNRS-UMS2009, Paris Université Paris France
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| |
Collapse
|
3
|
Wong A, Bi C, Chi W, Hu N, Gehring C. Amino acid motifs for the identification of novel protein interactants. Comput Struct Biotechnol J 2022; 21:326-334. [PMID: 36582434 PMCID: PMC9791077 DOI: 10.1016/j.csbj.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia 06121, Italy
| |
Collapse
|
4
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|