1
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Zhao X, Liu H, Zhang JC, Cai J. Helical sulfonyl-γ-AApeptides for the inhibition of HIV-1 fusion and HIF-1α signaling. RSC Med Chem 2024; 15:1418-1423. [PMID: 38784464 PMCID: PMC11110726 DOI: 10.1039/d4md00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
Synthetic helical peptidic foldamers show promising applications in chemical biology and biomedical sciences by mimicking protein helical segments. Sulfonyl-γ-AApeptide helices developed by our group exhibit good chemodiversity, predictable folding structures, proteolytic resistance, favorable cell permeability, and enhanced bioavailability. Herein, in this minireview, we highlight two recent examples of homogeneous left-handed sulfonyl-γ-AApeptide helices to modulate protein-protein interactions (PPIs). One is sulfonyl-γ-AApeptides as anti-HIV-1 fusion inhibitors mimicking the helical C-terminal heptad repeat (CHR), which show excellent anti-HIV-1 activities through tight binding with the N-terminal heptad repeat (NHR) and inhibiting the formation of the 6-helical bundle (HB) structure. Another example is helical sulfonyl-γ-AApeptides disrupting hypoxia-inducible factor 1α (HIF-1α) and p300 PPI, thus selectively inhibiting the relevant signaling cascade. We hope these findings could help to elucidate the principles of the structural design of sulfonyl-γ-AApeptides and inspire their future applications in PPI modulations.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Heng Liu
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Justin C Zhang
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| |
Collapse
|
3
|
Jiang W, Abdulkadir S, Zhao X, Sang P, Tomatsidou A, Zhang X, Chen Y, Calcul L, Sun X, Cheng F, Hu Y, Cai J. Inhibition of Hypoxia-Inducible Transcription Factor (HIF-1α) Signaling with Sulfonyl-γ-AApeptide Helices. J Am Chem Soc 2023; 145:20009-20020. [PMID: 37665648 PMCID: PMC10637359 DOI: 10.1021/jacs.3c06694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The development of inhibitors that selectively block protein-protein interactions (PPIs) is crucial for chemical biology, medicinal chemistry, and biomedical sciences. Herein, we reported the design, synthesis, and investigation of sulfonyl-γ-AApeptide as an alternative strategy of canonical peptide-based inhibitors to disrupt hypoxia-inducible factor 1α (HIF-1α) and p300 PPI by mimicking the helical domain of HIF-1α involved in the binding to p300. The designed molecules recognized the p300 protein with high affinity and potently inhibited the hypoxia-inducible signaling pathway. Gene expression profiling supported the idea that the lead molecules selectively inhibited hypoxia-inducible genes involved in the signaling cascade. Our studies also demonstrated that both helical faces consisting of either chiral side chains or achiral sulfonyl side chains of sulfonyl-γ-AApeptides could be adopted for mimicry of the α-helix engaging in PPIs. Furthermore, these sulfonyl-γ-AApeptides were cell-permeable and exhibited favorable stability and pharmacokinetic profiles. Our results could inspire the design of helical sulfonyl-γ-AApeptides as a general strategy to mimic the protein helical domain and modulate many other PPIs.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sami Abdulkadir
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Xue Zhao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Anastasia Tomatsidou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida 33612, United States
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| |
Collapse
|
4
|
Shah SKH, Modi U, Patel K, James A, N S, De S, Vasita R, Prabhakaran P. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomater Sci 2023; 11:6210-6222. [PMID: 37526301 DOI: 10.1039/d3bm00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The extensive research work in the exhilarating area of foldamers (artificial oligomers possessing well-defined conformation in solution) has shown them to be promising candidates in biomedical research and materials science. The post-modification approach is successful in peptides, proteins, and polymers to modulate their functions. To the best of our knowledge, site-selective post-modification of a foldamer affording molecules with different pendant functional groups within a molecular scaffold has not yet been reported. We demonstrate for the first time that late-stage site-selective functionalization of short hybrid oligomers is an efficient approach to afford molecules with diverse functional groups. In this article, we report the design and synthesis of hybrid peptides with repeating units of leucine (Leu) and 5-amino salicylic acid (ASA), regioselective post-modification, conformational analyses (based on solution-state NMR, circular dichroism and computational studies) and morphological studies of the peptide nanostructures. As a proof-of-concept, we demonstrate the applications of differently modified peptides as drug delivery agents, imaging probes, and anticancer agents. The novel feature of the work is that the difference in reactivity of two phenolic OH groups in short biomimetic peptides was utilized to achieve site-selective post-modification. It is challenging to apply the same approach to short α-peptides having a poor folding tendency, and their post-functionalization may considerably affect their conformation.
Collapse
Affiliation(s)
| | - Unnati Modi
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
| | - Sreerag N
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut 673635, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
5
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
6
|
Harrison K, Mackay AS, Kambanis L, Maxwell JWC, Payne RJ. Synthesis and applications of mirror-image proteins. Nat Rev Chem 2023; 7:383-404. [PMID: 37173596 DOI: 10.1038/s41570-023-00493-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/15/2023]
Abstract
The homochirality of biomolecules in nature, such as DNA, RNA, peptides and proteins, has played a critical role in establishing and sustaining life on Earth. This chiral bias has also given synthetic chemists the opportunity to generate molecules with inverted chirality, unlocking valuable new properties and applications. Advances in the field of chemical protein synthesis have underpinned the generation of numerous 'mirror-image' proteins (those comprised entirely of D-amino acids instead of canonical L-amino acids), which cannot be accessed using recombinant expression technologies. This Review seeks to highlight recent work on synthetic mirror-image proteins, with a focus on modern synthetic strategies that have been leveraged to access these complex biomolecules as well as their applications in protein crystallography, drug discovery and the creation of mirror-image life.
Collapse
Affiliation(s)
- Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Xue S, Xu W, Wang L, Wang X, Duan Q, Calcul L, Wang S, Liu W, Sun X, Lu L, Jiang S, Cai J. An HR2-Mimicking Sulfonyl-γ-AApeptide Is a Potent Pan-coronavirus Fusion Inhibitor with Strong Blood-Brain Barrier Permeability, Long Half-Life, and Promising Oral Bioavailability. ACS CENTRAL SCIENCE 2023; 9:1046-1058. [PMID: 37252367 PMCID: PMC10184535 DOI: 10.1021/acscentsci.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/31/2023]
Abstract
Neutralizing antibodies and fusion inhibitory peptides have the potential required to combat the global pandemic caused by SARS-CoV-2 and its variants. However, the lack of oral bioavailability and enzymatic susceptibility limited their application, necessitating the development of novel pan-CoV fusion inhibitors. Herein we report a series of helical peptidomimetics, d-sulfonyl-γ-AApeptides, which effectively mimic the key residues of heptad repeat 2 and interact with heptad repeat 1 in the SARS-CoV-2 S2 subunit, resulting in inhibiting SARS-CoV-2 spike protein-mediated fusion between virus and cell membranes. The leads also displayed broad-spectrum inhibitory activity against a panel of other human CoVs and showed strong potency in vitro and in vivo. Meanwhile, they also demonstrated complete resistance to proteolytic enzymes or human sera and exhibited extremely long half-life in vivo and highly promising oral bioavailability, delineating their potential as pan-CoV fusion inhibitors with the potential to combat SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Songyi Xue
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Wei Xu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Lei Wang
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xinling Wang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Qianyu Duan
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Laurent Calcul
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Shaohui Wang
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Wenqi Liu
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xingmin Sun
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Lu Lu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Jianfeng Cai
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
8
|
Xue S, Wang L, Cai J. Sulfono-γ-AApeptides as Protein Helical Domain Mimetics to Manipulate the Angiogenesis. Chembiochem 2022; 23:e202200298. [PMID: 36006398 PMCID: PMC9741949 DOI: 10.1002/cbic.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Indexed: 02/03/2023]
Abstract
Sulfono-γ-AApeptides recently developed in our group have been proven to be a new class of unnatural foldamer with well-defined helical structure and have been demonstrated to mimic protein helical domains and disrupt biomedically relevant protein-protein interactions (PPIs). Based on our design concept in a recent report, we discovered two similar sulfono-γ-AApeptides V2 and V3 which were designed to mimic the VEGF N-terminal helix α1 known to directly interact with VEGFRs. Interestingly, V2 was shown to possess the pro-angiogenic effect, whereas V3 was proved to be a potent inhibitor for angiogenesis. We speculate that the distinct angiogenesis signaling was due to the selective binding of the two molecules to VEGFR1 and VEGFR2, respectively. Together with their remarkable resistance to proteolytic degradation, relatively small sizes, and amenability to modification with diverse functional groups, V2 and V3 could serve as lead molecules for the development of potential therapeutic agents and molecular probes. These findings highlight sulfono-γ-AApeptides as an alternative paradigm to mimic the α-helical domain to modulate a wide variety of PPIs in the future.
Collapse
Affiliation(s)
- Songyi Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, USA
| | - Lei Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, USA
| |
Collapse
|
9
|
Ide Y, Manabe Y, Inaba Y, Kinoshita Y, Pirillo J, Hijikata Y, Yoneda T, Shivakumar KI, Tanaka S, Asakawa H, Inokuma Y. Determination of the critical chain length for macromolecular crystallization using structurally flexible polyketones. Chem Sci 2022; 13:9848-9854. [PMID: 36199636 PMCID: PMC9434099 DOI: 10.1039/d2sc03083g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Critical chain length that divides small molecule crystallization from macromolecular crystallization is an important index in macro-organic chemistry to predict chain-length dependent properties of oligomers and polymers. However, extensive research on crystallization behavior of individual oligomers has been inhibited by difficulties in their synthesis and crystallization. Here, we report on the determination of critical chain length of macromolecular crystallization for structurally flexible polyketones consisting of 3,3-dimethylpentane-2,4-dione. Discrete polyketone oligomers were synthesized via stepwise elongation up to 20-mer. Powder and single crystal X-ray diffraction showed that the critical chain length for polyketones existed at an unexpectedly short chain length, 5-mer. While shorter oligomers adopted unique conformations and packing structures in the solid state, higher oligomers longer than 4-mer produced helical conformations and similar crystal packing. The critical chain length helped with understanding the inexplicable changes in melting point in the shorter chain length region resulting from chain conformations and packing styles.
Collapse
Affiliation(s)
- Yuki Ide
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Yumehiro Manabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yuya Inaba
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yusuke Kinoshita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Kilingaru I Shivakumar
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Saki Tanaka
- Nanomaterials Research Institute (NanoMaRi), Graduate School of Natural Science and Technology, and Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kanazawa 920-1192 Japan
| | - Hitoshi Asakawa
- Nanomaterials Research Institute (NanoMaRi), Graduate School of Natural Science and Technology, and Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kanazawa 920-1192 Japan
| | - Yasuhide Inokuma
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
10
|
Sang P, Shi Y, Wei L, Cai J. Helical sulfono-γ-AApeptides with predictable functions in protein recognition. RSC Chem Biol 2022; 3:805-814. [PMID: 35866163 PMCID: PMC9257604 DOI: 10.1039/d2cb00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Sulfono-γ-AApeptides are a subset of possible sequence-specific foldamers that might be considered for the design of biomimetic drug molecular structures. Although they have been studied for a relatively short period of time, a number of structures and functions have been designed or discovered within this class of unnatural peptides. Examples of utilizing these sulfono-γ-AApeptides have demonstrated the potential that sulfono-γ-AApeptides can offer, however, to date, their application in biomedical sciences yet remains unexplored. This review mainly summarizes the helical folding conformations of sulfono-γ-AApeptides and their biological application as helical mimetics in medicinally relevant protein-protein interactions (PPIs) and assesses their potential for the mimicry of other α-helices for protein recognition in the future.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Yan Shi
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Lulu Wei
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| |
Collapse
|
11
|
Huang B, Zhou L, Liu R, Wang L, Xue S, Shi Y, Jeong GH, Jeong IH, Li S, Yin J, Cai J. Activation of E6AP/UBE3A-Mediated Protein Ubiquitination and Degradation Pathways by a Cyclic γ-AA Peptide. J Med Chem 2022; 65:2497-2506. [PMID: 35045253 PMCID: PMC8889547 DOI: 10.1021/acs.jmedchem.1c01922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Manipulating the activities of E3 ubiquitin ligases with chemical ligands holds promise for correcting E3 malfunctions and repurposing the E3s for induced protein degradation in the cell. Herein, we report an alternative strategy to proteolysis-targeting chimeras (PROTACs) and molecular glues to induce protein degradation by constructing and screening a γ-AA peptide library for cyclic peptidomimetics binding to the HECT domain of E6AP, an E3 ubiquitinating p53 coerced by the human papillomavirus and regulating pathways implicated in neurodevelopmental disorders such as Angelman syndrome. We found that a γ-AA peptide P6, discovered from the affinity-based screening with the E6AP HECT domain, can significantly stimulate the ubiquitin ligase activity of E6AP to ubiquitinate its substrate proteins UbxD8, HHR23A, and β-catenin in reconstituted reactions and HEK293T cells. Furthermore, P6 can accelerate the degradation of E6AP substrates in the cell by enhancing the catalytic activities of E6AP. Our work demonstrates the feasibility of using synthetic ligands to stimulate E3 activities in the cell. The E3 stimulators could be developed alongside E3 inhibitors and substrate recruiters such as PROTACs and molecular glues to leverage the full potential of protein ubiquitination pathways for drug development.
Collapse
Affiliation(s)
- Bo Huang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Songyi Xue
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Geon Ho Jeong
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - In Ho Jeong
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Sihao Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
12
|
Sang P, Zeng H, Lee C, Shi Y, Wang M, Pan C, Wei L, Huang C, Wu M, Shen W, Li X, Cai J. α/Sulfono-γ-AApeptide Hybrid Analogues of Glucagon with Enhanced Stability and Prolonged In Vivo Activity. J Med Chem 2021; 64:13893-13901. [PMID: 34506138 PMCID: PMC8903076 DOI: 10.1021/acs.jmedchem.1c01289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peptide drugs have the advantages of target specificity and good drugability and have become one of the most increasingly important hotspots in new drug research in biomedical sciences. However, peptide drugs generally have low bioavailability and metabolic stability, and therefore, the modification of existing peptide drugs for the purpose of improving stability and retaining activity is of viable importance. It is known that glucagon is an effective therapy for treating severe hypoglycemia, but its short half-life prevents its wide therapeutic use. Herein, we report that combined unnatural residues and long fatty acid conjugation afford potent α/sulfono-γ-AApeptide hybrid analogues of Glucagon with enhanced stability and prolonged in vivo activity. This strategy could be adopted to develop stabilized analogues of other short-acting bioactive peptides.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Hongxiang Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Candy Lee
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Cong Pan
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chenglong Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Weijun Shen
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|