1
|
Haque MA, Grieder A, Harvey SP, Brunecky R, Ye JY, Addison B, Zhang J, Dong Y, Xie Y, Hautzinger MP, Walpitage HH, Zhu K, Blackburn JL, Vardeny ZV, Mitzi DB, Berry JJ, Marder SR, Ping Y, Beard MC, Luther JM. Remote chirality transfer in low-dimensional hybrid metal halide semiconductors. Nat Chem 2024:10.1038/s41557-024-01662-2. [PMID: 39455700 DOI: 10.1038/s41557-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (gCD) of up to 10-2. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations. Anchoring of the chiral molecule induces a centro-asymmetric distortion, which is discernible up to four inorganic layers into the metal halide lattice. This concept is broadly applicable to low-dimensional hybrid metal halides with various dimensionalities (1D and 2D) allowing independent control of the composition and degree of chirality.
Collapse
Affiliation(s)
| | - Andrew Grieder
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jiselle Y Ye
- National Renewable Energy Laboratory, Golden, CO, USA
- Department of Physics, Materials Science Program, Colorado School of Mines, Golden, CO, USA
| | | | - Junxiang Zhang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Yifan Dong
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Yi Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | | | | | - Kai Zhu
- National Renewable Energy Laboratory, Golden, CO, USA
| | | | - Zeev Valy Vardeny
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - David B Mitzi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Joseph J Berry
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Seth R Marder
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering and Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Yuan Ping
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph M Luther
- National Renewable Energy Laboratory, Golden, CO, USA.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Robey JMS, Maity S, Aleshire SL, Ghosh A, Yadaw AK, Roy S, Mear SJ, Jamison TF, Sirasani G, Senanayake CH, Stringham RW, Gupton BF, Donsbach KO, Nelson RC, Shanahan CS. Application of Chiral Transfer Reagents to Improve Stereoselectivity and Yields in the Synthesis of the Antituberculosis Drug Bedaquiline. Org Process Res Dev 2023; 27:2146-2159. [PMID: 38025988 PMCID: PMC10661061 DOI: 10.1021/acs.oprd.3c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Indexed: 12/01/2023]
Abstract
Bedaquiline (BDQ) is an important drug for treating multidrug-resistant tuberculosis (MDR-TB), a worldwide disease that causes more than 1.6 million deaths yearly. The current synthetic strategy adopted by the manufacturers to assemble this molecule relies on a nucleophilic addition reaction of a quinoline fragment to a ketone, but it suffers from low conversion and no stereoselectivity, which subsequently increases the cost of manufacturing BDQ. The Medicines for All Institute (M4ALL) has developed a new reaction methodology to this process that not only allows high conversion of starting materials but also results in good diastereo- and enantioselectivity toward the desired BDQ stereoisomer. A variety of chiral lithium amides derived from amino acids were studied, and it was found that lithium (R)-2-(methoxymethyl)pyrrolidide, obtained from d-proline, results in high assay yield of the desired syn-diastereomer pair (82%) and with considerable stereocontrol (d.r. = 13.6:1, e.r. = 3.6:1, 56% ee), providing BDQ in up to a 64% assay yield before purification steps toward the final API. This represents a considerable improvement in the BDQ yield compared to previously reported conditions and could be critical to further lowering the cost of this life-saving drug.
Collapse
Affiliation(s)
- Juliana M. S. Robey
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Sanjay Maity
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Sarah L. Aleshire
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Angshuman Ghosh
- R&D
Centre, TCG Life Sciences Pvt. Limited, Kolkata, WB 700091, India
| | - Ajay K. Yadaw
- R&D
Centre, TCG Life Sciences Pvt. Limited, Kolkata, WB 700091, India
| | - Subho Roy
- R&D
Centre, TCG Life Sciences Pvt. Limited, Kolkata, WB 700091, India
| | - Sarah Jane Mear
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy F. Jamison
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Gopal Sirasani
- TCG
GreenChem, Inc., Richmond, Virginia 23219, United States
| | | | - Rodger W. Stringham
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - B. Frank Gupton
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Kai O. Donsbach
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Ryan C. Nelson
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Charles S. Shanahan
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| |
Collapse
|
3
|
Reid JP, Betinol IO, Kuang Y. Mechanism to model: a physical organic chemistry approach to reaction prediction. Chem Commun (Camb) 2023; 59:10711-10721. [PMID: 37552047 DOI: 10.1039/d3cc03229a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The application of mechanistic generalizations is at the core of chemical reaction development and application. These strategies are rooted in physical organic chemistry where mechanistic understandings can be derived from one reaction and applied to explain another. Over time these techniques have evolved from rationalizing observed outcomes to leading experimental design through reaction prediction. In parallel, significant progression in asymmetric organocatalysis has expanded the reach of chiral transfer to new reactions with increased efficiency. However, the complex and diverse catalyst structures applied in this arena have rendered the generalization of asymmetric catalytic processes to be exceptionally challenging. Recognizing this, a portion of our research has been focused on understanding the transferability of chemical observations between similar reactions and exploiting this phenomenon as a platform for prediction. Through these experiences, we have relied on a working knowledge of reaction mechanism to guide the development and application of our models which have been advanced from simple qualitative rules to large statistical models for quantitative predictions. In this feature article, we describe the models acquired to generalize organocatalytic reaction mechanisms and demonstrate their use as a powerful approach for accelerating enantioselective synthesis.
Collapse
Affiliation(s)
- Jolene P Reid
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Isaiah O Betinol
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
4
|
Liles JP, Rouget-Virbel C, Wahlman JLH, Rahimoff R, Crawford JM, Medlin A, O’Connor V, Li J, Roytman VA, Toste FD, Sigman MS. Data Science Enables the Development of a New Class of Chiral Phosphoric Acid Catalysts. Chem 2023; 9:1518-1537. [PMID: 37519827 PMCID: PMC10373836 DOI: 10.1016/j.chempr.2023.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The widespread success of BINOL-chiral phosphoric acids (CPAs) has led to the development of several high molecular weight, sterically encumbered variants. Herein, we disclose an alternative, minimalistic chiral phosphoric acid backbone incorporating only a single instance of point chirality. Data science techniques were used to select a diverse training set of catalysts, which were benchmarked against the transfer hydrogenation of an 8-aminoquinoline. Using a univariate classification algorithm and multivariate linear regression, key catalyst features necessary for high levels of selectivity were deconvoluted, revealing a simple catalyst model capable of predicting selectivity for out-of-set catalysts. This workflow enabled extrapolation to a catalyst providing higher selectivity than both reported peptide-type and BINOL-type catalysts (up to 95:5 er). These techniques were then successfully applied towards two additional transforms. Taken together, these examples illustrate the power of combining rational design with data science (ab initio) to efficiently explore reactivity during catalyst development.
Collapse
Affiliation(s)
- Jordan P. Liles
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | | | - Julie L. H. Wahlman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Rene Rahimoff
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer M. Crawford
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Abby Medlin
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Veronica O’Connor
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Junqi Li
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Vladislav A. Roytman
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - F. Dean Toste
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
- Lead contact
| |
Collapse
|
5
|
Lai J, Reid JP. Interrogating the thionium hydrogen bond as a noncovalent stereocontrolling interaction in chiral phosphate catalysis. Chem Sci 2022; 13:11065-11073. [PMID: 36320465 PMCID: PMC9516887 DOI: 10.1039/d2sc02171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
CH⋯O bonds are a privileged noncovalent interaction determining the energies and geometries of a large number of structures. In catalytic settings, these are invoked as a decisive feature controlling many asymmetric transformations involving aldehydes. However, little is known about their stereochemical role when the interaction involves other substrate types. We report the results of computations that show for the first time thionium hydrogen bonds to be an important noncovalent interaction in asymmetric catalysis. As a validating case study, we explored an asymmetric Pummerer rearrangement involving thionium intermediates to yield enantioenriched N,S-acetals under BINOL-derived chiral phosphate catalysis. DFT and QM/MM hybrid calculations showed that the lowest energy pathway corresponded to a transition state involving two hydrogen bonding interactions from the thionium intermediate to the catalyst. However, the enantiomer resulting from this process differed from the originally published absolute configuration. Experimental determination of the absolute configuration resolved this conflict in favor of our calculations. The reaction features required for enantioselectivity were further interrogated by statistical modeling analysis that utilized bespoke featurization techniques to enable the translation of enantioselectivity trends from intermolecular reactions to those proceeding intramolecularly. Through this suite of computational modeling techniques, a new model is revealed that provides a different explanation for the product outcome and enabled reassignment of the absolute product configuration.
Collapse
Affiliation(s)
- Junshan Lai
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
6
|
Zeng Y, Lemay JC, Dong Y, Garcia J, Groves MN, McBreen PH. Ligand-Assisted Carbonyl Bond Activation in Single Diastereomeric Complexes on Platinum. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zeng
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jean-Christian Lemay
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Yi Dong
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - James Garcia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Michael. N Groves
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Peter H. McBreen
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|