1
|
Takeda H, Matsuzawa Y, Takeuchi M, Takahashi M, Nishida K, Harayama T, Todoroki Y, Shimizu K, Sakamoto N, Oka T, Maekawa M, Chung MH, Kurizaki Y, Kiuchi S, Tokiyoshi K, Buyantogtokh B, Kurata M, Kvasnička A, Takeda U, Uchino H, Hasegawa M, Miyamoto J, Tanabe K, Takeda S, Mori T, Kumakubo R, Tanaka T, Yoshino T, Okamoto M, Takahashi H, Arita M, Tsugawa H. MS-DIAL 5 multimodal mass spectrometry data mining unveils lipidome complexities. Nat Commun 2024; 15:9903. [PMID: 39609386 PMCID: PMC11605090 DOI: 10.1038/s41467-024-54137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Lipidomics and metabolomics communities comprise various informatics tools; however, software programs handling multimodal mass spectrometry (MS) data with structural annotations guided by the Lipidomics Standards Initiative are limited. Here, we provide MS-DIAL 5 for in-depth lipidome structural elucidation through electron-activated dissociation (EAD)-based tandem MS and determining their molecular localization through MS imaging (MSI) data using a species/tissue-specific lipidome database containing the predicted collision-cross section values. With the optimized EAD settings using 14 eV kinetic energy, the program correctly delineated lipid structures for 96.4% of authentic standards, among which 78.0% had the sn-, OH-, and/or C = C positions correctly assigned at concentrations exceeding 1 μM. We showcased our workflow by annotating the sn- and double-bond positions of eye-specific phosphatidylcholines containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs), characterized as PC n-3-VLC-PUFA/FA. Using MSI data from the eye and n-3-VLC-PUFA-supplemented HeLa cells, we identified glycerol 3-phosphate acyltransferase as an enzyme candidate responsible for incorporating n-3 VLC-PUFAs into the sn1 position of phospholipids in mammalian cells, which was confirmed using EAD-MS/MS and recombinant proteins in a cell-free system. Therefore, the MS-DIAL 5 environment, combined with optimized MS data acquisition methods, facilitates a better understanding of lipid structures and their localization, offering insights into lipid biology.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0106, Japan
| | - Yuki Matsuzawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Manami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Mikiko Takahashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kozo Nishida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur - CNRS UMR7275 - Inserm U1323, 660 Route des Lucioles, 06560, Valbonne, France.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - Yoshimasa Todoroki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Kuniyoshi Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Nami Sakamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Takaki Oka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Masashi Maekawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Mi Hwa Chung
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Yuto Kurizaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Saki Kiuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Kanako Tokiyoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Bujinlkham Buyantogtokh
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Misaki Kurata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Aleš Kvasnička
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Zdravotníků 248/7, 779 00, Olomouc, Czech Republic
- Department of Medical Biochemistry, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Ushio Takeda
- K.K. ABSciex Japan, Shinagawa, Tokyo, 140-0001, Japan
| | - Haruki Uchino
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayu Hasegawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kana Tanabe
- Innovative Technology Laboratories, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shigenori Takeda
- Innovative Technology Laboratories, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryota Kumakubo
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tsuyoshi Tanaka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Mami Okamoto
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Hidenori Takahashi
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Makoto Arita
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
2
|
Li Y, Wang Y, Guo K, Tseng KF, Zhang X, Sun W. Aza-Prilezhaev Aziridination-Enabled Multidimensional Analysis of Isomeric Lipids via High-Resolution U-Shaped Mobility Analyzer-Mass Spectrometry. Anal Chem 2024; 96:7111-7119. [PMID: 38648270 DOI: 10.1021/acs.analchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Unsaturated lipids constitute a significant portion of the lipidome, serving as players of multifaceted functions involving cellular signaling, membrane structure, and bioenergetics. While derivatization-assisted liquid chromatography tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidome, it mainly faces challenges in efficiently labeling the carbon-carbon double bond (C═C) and differentiating isomeric lipids in full dimension. This presents a need for new orthogonal methodologies. Herein, a metal- and additive-free aza-Prilezhaev aziridination (APA)-enabled ion mobility mass spectrometric method is developed for probing multiple levels of unsaturated lipid isomerization with high sensitivity. Both unsaturated polar and nonpolar lipids can be efficiently labeled in the form of N-H aziridine without significant side reactions. The signal intensity can be increased by up to 3 orders of magnitude, achieving the nM detection limit. Abundant site-specific fragmentation ions indicate C═C location and sn-position in MS/MS spectra. Better yet, a stable monoaziridination product is dominant, simplifying the spectrum for lipids with multiple double bonds. Coupled with a U-shaped mobility analyzer, identification of geometric isomers and separation of different lipid classes can be achieved. Additionally, a unique pseudo MS3 mode with UMA-QTOF MS boosts the sensitivity for generating diagnostic fragments. Overall, the current method provides a comprehensive solution for deep-profiling lipidomics, which is valuable for lipid marker discovery in disease monitoring and diagnosis.
Collapse
Affiliation(s)
- Yuling Li
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yiming Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kang Guo
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kuo-Feng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
3
|
Ross DH, Lee JY, Bilbao A, Orton DJ, Eder JG, Burnet MC, Deatherage Kaiser BL, Kyle JE, Zheng X. LipidOz enables automated elucidation of lipid carbon-carbon double bond positions from ozone-induced dissociation mass spectrometry data. Commun Chem 2023; 6:74. [PMID: 37076550 PMCID: PMC10115790 DOI: 10.1038/s42004-023-00867-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Lipids play essential roles in many biological processes and disease pathology, but unambiguous identification of lipids is complicated by the presence of multiple isomeric species differing by fatty acyl chain length, stereospecifically numbered (sn) position, and position/stereochemistry of double bonds. Conventional liquid chromatography-mass spectrometry (LC-MS/MS) analyses enable the determination of fatty acyl chain lengths (and in some cases sn position) and number of double bonds, but not carbon-carbon double bond positions. Ozone-induced dissociation (OzID) is a gas-phase oxidation reaction that produces characteristic fragments from lipids containing double bonds. OzID can be incorporated into ion mobility spectrometry (IMS)-MS instruments for the structural characterization of lipids, including additional isomer separation and confident assignment of double bond positions. The complexity and repetitive nature of OzID data analysis and lack of software tool support have limited the application of OzID for routine lipidomics studies. Here, we present an open-source Python tool, LipidOz, for the automated determination of lipid double bond positions from OzID-IMS-MS data, which employs a combination of traditional automation and deep learning approaches. Our results demonstrate the ability of LipidOz to robustly assign double bond positions for lipid standard mixtures and complex lipid extracts, enabling practical application of OzID for future lipidomics.
Collapse
Affiliation(s)
- Dylan H Ross
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Joon-Yong Lee
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- PrognomiQ, Inc, San Mateo, CA, 94403, USA
| | - Aivett Bilbao
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Josie G Eder
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Meagan C Burnet
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | - Jennifer E Kyle
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Xueyun Zheng
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|