1
|
Dai J, Jiang X, Gao H, Huang B, De Clercq E, Pannecouque C, Du S, Liu X, Zhan P. Discovery of novel fused-heterocycle-bearing diarypyrimidine derivatives as HIV-1 potent NNRTIs targeting tolerant region I for enhanced antiviral activity and resistance profile. Eur J Med Chem 2025; 281:117033. [PMID: 39536498 DOI: 10.1016/j.ejmech.2024.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
As an important part of anti-AIDS therapy, HIV-1 non-nucleoside reverse transcriptase inhibitors are plagued by resistance and toxicity issues. Taking our reported XJ-18b1 as lead compound, we designed a series of novel diarypyrimidine derivatives by employing a scaffold hopping strategy to discover potent NNRTIs with improved anti-resistance properties and drug-like profiles. The most active compound 3k exhibited prominent inhibitory activity against wild-type HIV-1 (EC50 = 0.0019 μM) and common mutant strains including K103 N (EC50 = 0.0019 μM), L100I (EC50 = 0.0087 μM), E138K (EC50 = 0.011 μM), along with low cytotoxicity and high selectivity index (CC50 = 21.95 μM, SI = 11478). Additionally, compound 3k demonstrated antiviral activity against HIV-2 with EC50 value of 6.14 μM. The enzyme-linked immunosorbent assay validated that 3k could significantly inhibit the activity of HIV-1 reverse transcriptase (IC50 = 0.025 μM). Furthermore, molecular dynamics simulation studies were performed to illustrate the potential binding mode and binding free energy of the RT-3k complex, and in silico prediction revealed that 3k possessed favorable drug-like profiles. Collectively, 3k proved to be a promising lead compound for further optimization to obtain anti-HIV drug candidates.
Collapse
Affiliation(s)
- Jiaojiao Dai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Heng Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Jiang X, Zalloum WA, Gao Z, Dai J, Ji X, Xie M, Dong G, De Clercq E, Huang B, Pannecouque C, Zhan P, Liu X. Identification of novel diarylpyrimidine derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors against wild-type and K103N mutant viruses. Eur J Med Chem 2024; 280:116941. [PMID: 39369484 DOI: 10.1016/j.ejmech.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) play a crucial role in combination antiretroviral therapy (cART). To further enhance their antiviral activity and anti-resistance properties, we developed a series of novel NNRTIs, by specifically targeting tolerant region I of the NNRTI binding pocket. Among them, compound 9t-2 displayed excellent anti-HIV-1 potency against wild-type and prevalent mutant strains with EC50 values between 0.0019 and 0.012 μM. This outperformed the positive drugs ETR, NVP and RPV. Aslo, ELISA results confirmed that these compounds can effectively inhibit the activity of HIV-1 RT. Molecular dynamics (MD) simulation studies indicated that the thiomorpholine-1,1-dioxide moiety of 9t-2 is capable of establishing additional interactions with residues P225, F227 and P236 in the tolerant region I, which contributed to its enhanced activity. Compound 9t-2 possessed negligible inhibitory effect on the five main CYP isoenzymes (IC50 > 10 μM), indicating a low potential for inducing CYP-mediated drug-drug interactions. In conclusion, compound 9t-2, with its enhanced anti-resistance properties, stands out as a promising lead compound for further optimization towards discovering the new generation of anti-HIV agents.
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882, Amman, 11821, Jordan
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiaojiao Dai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
3
|
Nie MZ, Zhang SS, Gu SX, Long J, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors (2019-2023). Eur J Med Chem 2024; 280:116973. [PMID: 39432934 DOI: 10.1016/j.ejmech.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a vital cornerstone of highly active antiretroviral therapy (HAART) regimens, owing to their unique antiviral activity, low toxicity and high specificity. Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine and rilpivirine, have attracted extensive attention due to their high anti-HIV potency. However, rapid emergence of resistant mutations, suboptimal pharmacokinetics (PK), and toxicity remain significant challenges. Recent structural modifications of DAPY analogues have focused on improving resistance profiles, optimizing PK properties (such as half-life and bioavailability), diversifying core structures through scaffold hopping, refining side-chain structures to enhance activity and selectivity, and reducing toxicity and side effects. Moreover, developing new DAPY analogues with broad-spectrum antiviral activity has become a key research priority. This review provides a comprehensive overview of the evolution of DAPYs from 2019 to 2023, including scaffold hopping and structural modifications of the right wing, left wing, central pyrimidine core, and linker, affording valuable insights for the future development of effective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Mu-Zi Nie
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
4
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Lv Z, Ali A, Zou C, Wang Z, Ma M, Cheng N, Shad M, Hao H, Zhang Y, Rahman FU. Salicylaldehyde-derived piperazine-functionalized hydrazone ligand-based Pt(II) complexes: inhibition of EZH2-dependent tumorigenesis in pancreatic ductal adenocarcinoma, synergism with PARP inhibitors and enhanced apoptosis. Dalton Trans 2024; 53:13871-13889. [PMID: 39091221 DOI: 10.1039/d4dt01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Piperazine is an important functional unit of many clinically approved drugs, including chemotherapeutic agents. In the current study, methyl piperazine was incorporated and eight salicylaldehyde-derived piperazine-functionalized hydrazone ONN-donor ligands (L) and their Pt(II) complexes (L-PtCl) were prepared. The structures of all these ligands (L1-L8) and Pt(II) complexes (C1-C8) were determined using 1H and 13C NMR, UV-vis, FT-IR and HR-ESI MS analyses, whereas the structures of C1, C5, C6, C7 and C8 were determined in the solid state using single crystal X-ray diffraction analysis. Solution state stabilities of C3, C4, C5 and C6 were determined via time-dependent UV-vis spectroscopy. All these complexes (C1-C8) were studied for their anticancer effect in pancreatic ductal adenocarcinoma cells, including BxPC3, MIAPaCa-2 and PANC1 cells. C1-C8 displayed a potential cytotoxic effect in all these cancer cells, among which C5, C6 and C8 showed the strongest inhibitory effect in comparison with standard chemotherapeutic agents, including 5-fluorouracil (5-FU), cisplatin (CP), oxaliplatin and doxorubicin (DOX). C5, C6 and C8 suppressed the growth of pancreatic cancer cells in a dose-dependent manner. Moreover, C5, C6 and C8 inhibited clonogenic potential and invasion ability and induced apoptosis in PANC1 cells. Importantly, C5, C6 and C8 synergized the anticancer effect with PARP inhibitors, including olaparib, veliparib and niraparib, in pancreatic cancer cells, thus suggesting an important role of C5, C6 and C8 in induction of apoptosis in combination with PARP inhibitors. C5 combined with PARP inhibitors induced caspase3/7 activity and suppressed ATP production. Mechanistically, C5, C6 and C8 inhibited EZH2 protein expression to suppress EZH2-dependent tumorigenesis. Overall, these results highlighted the importance of these piperazine-functionalized Pt(II) complexes as potential anticancer agents to suppress pancreatic ductal adenocarcinoma tumorigenesis by targeting the EZH2-dependent pathway.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Cheng Zou
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Zerui Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Minglu Ma
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Na Cheng
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
6
|
Maqbool M, Jakobsson JE, Alluri SR, Kramer V, Riss PJ. A protocol for controlled reactivity shift in the 2,2-difluorovinyl motif used for selective S- 18F and C- 18F bond formation. Commun Chem 2024; 7:97. [PMID: 38684771 PMCID: PMC11058245 DOI: 10.1038/s42004-024-01132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Positron emission tomography (PET) is a powerful imaging technique for biomedical research, drug development and medical diagnosis. The power of PET lies in biochemically selective radiotracers, labelled with positron emitters like fluorine-18 image chemical processes in vivo. A rapid and remarkably efficient, unprecedented protocol to select between S-F and C-F bond formation based on activation of 1,1-difluoroethylene groups followed by selective oxidation or reduction is described. While transition metal mediated conditions can be employed, the reaction proceeds in high yield using unobjectionable chemical reagents amenable to routine radiotracer production. The latter bodes well for facile clinical translation of the method. The new technique affords radiotracers and the labelling reagent 2,2-difluoro-2-(fluoro-18F)ethyl 4-methylbenzenesulfonate ([18F]1b) in excellent yield. Following oxygenation of the reaction mixture with medical oxygen or air, sulfonyl fluorides are obtained as the primary product. The new protocol was employed in a proof of principle to develop a radiometric assay for quantitation of sulfonylation yield with sulfonyl fluoride reagents. With operational ease and mild conditions, the method bodes a high potential for radiolabelling of biomolecules, known enzyme inhibitors and other temperature-sensitive compounds.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Clinical Neurocience, OUS-Ullevål, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | | | - Vasko Kramer
- Positronpharma SA, Rancangua, Santiago de Chile, Santiago, Chile
| | - Patrick Johannes Riss
- Department of Clinical Neurocience, OUS-Ullevål, Oslo, Norway.
- Department of Chemistry, University of Oslo, Oslo, Norway.
- Department of Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Xie M, Wang Z, Zhao F, Li Y, Zhuo Z, Li X, De Clercq E, Pannecouque C, Zhan P, Liu X, Kang D. Structure-based design of diarylpyrimidines and triarylpyrimidines as potent HIV-1 NNRTIs with improved metabolic stability and drug resistance profiles. J Med Virol 2024; 96:e29502. [PMID: 38450817 DOI: 10.1002/jmv.29502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC50 = 2.4-12.4 nM), being superior to or comparable to those of the approved drug etravirine. Meanwhile, 11b1 exhibited moderate cytotoxicity (CC50 = 4.96 μM) and high selectivity index (SI = 1189) toward HIV-1 WT strain. As for HIV-1 RT inhibition test, 11b1 possessed excellent inhibitory potency (IC50 = 0.04 μM) and confirmed its target was RT. Moreover, the molecular dynamics simulation was performed to elucidate the improved drug resistance profiles. Moreover, 11b1 was demonstrated with favorable safety profiles and pharmacokinetic properties in vivo, indicating that 11b1 is a potential anti-HIV-1 drug candidate worthy of further development.
Collapse
Affiliation(s)
- Minghui Xie
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Fabao Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ye Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongji Zhuo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Leuven, Belgium
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
8
|
Abimbola Salubi C, Abbo HS, Jahed N, Titinchi S. Medicinal chemistry perspectives on the development of piperazine-containing HIV-1 inhibitors. Bioorg Med Chem 2024; 99:117605. [PMID: 38246116 DOI: 10.1016/j.bmc.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The Human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS), one of the most perilous diseases known to humankind. A 2023 estimate put the number of people living with HIV around 40 million worldwide, with the majority benefiting from various antiretroviral therapies. Consequently, the urgent need for the development of effective drugs to combat this virus cannot be overstated. In the realm of medicinal and organic chemistry, the synthesis and identification of novel compounds capable of inhibiting HIV enzymes at different stages of their life cycle are of paramount importance. Notably, the spotlight is on the progress made in enhancing the potency of HIV inhibitors through the use of piperazine-based compounds. Multiple studies have revealed that the incorporation of a piperazine moiety results in a noteworthy enhancement of anti-HIV activity. The piperazine ring assumes a pivotal role in shaping the pharmacophore responsible for inhibiting HIV-1 at critical stage, including attachment, reverse transcription, integration, and protease activity. This review also sheds light on the various opportunities that can be exploited to develop effective antiretroviral targets and eliminate latent HIV reservoirs. The advancement of highly potent analogues in HIV inhibitor research has been greatly facilitated by contemporary medicinal strategies, including molecular/fragment hybridization, structure-based drug design, and bioisosterism. These techniques have opened up new avenues for the development of compounds with enhanced efficacy in combating the virus.
Collapse
Affiliation(s)
- Christiana Abimbola Salubi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Hanna S Abbo
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nazeeen Jahed
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Salam Titinchi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
9
|
Nammalwar B, Bunce RA. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals (Basel) 2024; 17:104. [PMID: 38256937 PMCID: PMC10820437 DOI: 10.3390/ph17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrimidines have become an increasingly important core structure in many drug molecules over the past 60 years. This article surveys recent areas in which pyrimidines have had a major impact in drug discovery therapeutics, including anti-infectives, anticancer, immunology, immuno-oncology, neurological disorders, chronic pain, and diabetes mellitus. The article presents the synthesis of the medicinal agents and highlights the role of the biological target with respect to the disease model. Additionally, the biological potency, ADME properties and pharmacokinetics/pharmacodynamics (if available) are discussed. This survey attempts to demonstrate the versatility of pyrimidine-based drugs, not only for their potency and affinity but also for the improved medicinal chemistry properties of pyrimidine as a bioisostere for phenyl and other aromatic π systems. It is hoped that this article will provide insight to researchers considering the pyrimidine scaffold as a chemotype in future drug candidates in order to counteract medical conditions previously deemed untreatable.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA;
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|