1
|
Chang CK, Wu ZS, Niu GH, Chou YY, Tang SH, Zhang MM, Sung CS, Tung HT, Tsou LK, Tang CC, Sung PJ, Lo YH, Wen ZH. Marine-derived STING inhibitors, excavatolide B promote wound repair in full-thickness-incision rats. Int Immunopharmacol 2025; 155:114593. [PMID: 40209311 DOI: 10.1016/j.intimp.2025.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/12/2025]
Abstract
The process of wound healing encompasses both inflammatory and proliferative stages. Excessive inflammation is known to impede the healing of chronic wounds. Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway causes inflammation during cellular stress and tissue damage. Herein, we examined the anti-inflammatory effects of the marine-derived STING antagonist excavatolide B (EXCB) and its derivatives, EXCB-61 and EXCB-79, in full-thickness-incision rats. Wound area measurements, histopathological observations, and immunohistochemical analyses were performed to evaluate the roles of these compounds in wound healing. These three compounds were found to have low toxicity, with EXCB promoting Hs68 human dermal fibroblast migration and proliferation. EXCB and EXCB61 treatments, but not EXCB79, reduced the wound area. The histopathological results showed a significant decrease in immune cell infiltration and mast cell accumulation in all compound-treated groups. Immunohistochemical analysis revealed that EXCB and its derivatives reduced cGAS-STING pathway factors such as STING, phosphorylated TANK-binding kinase 1, nuclear factor kappa-light-chain-enhancer of activated B cells, and M1 macrophages while increasing the expression of angiogenic factors vascular endothelial growth factor and CD31, as well as M2 macrophages and collagen I/III deposition. We conclude that marine-derived STING antagonists can attenuate inflammatory responses by inhibiting the cGAS-STING pathway and promoting angiogenesis, thereby aiding wound healing.
Collapse
Affiliation(s)
- Chun-Kai Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Plastic & Reconstructive Surgery, Zouying Armed Forces General Hospital, No. 553, Junxiao Rd., Zuoying Dist., Kaohsiung City 81342, Taiwan
| | - Zong-Sheng Wu
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Yu-Yu Chou
- Department of Plastic & Reconstructive Surgery, Zouying Armed Forces General Hospital, No. 553, Junxiao Rd., Zuoying Dist., Kaohsiung City 81342, Taiwan
| | - Shih-Hsuan Tang
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsiang-Ting Tung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Chi-Chieh Tang
- Department of Early Childhood Education, National Pingtung University, 91201, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan; Department of Nursing, Meiho University, Pingtung County, 91200, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
2
|
Niu GH, Hsiao WC, Lee PH, Zheng LG, Yang YS, Huang WC, Hsieh CC, Chiu TY, Wang JY, Chen CP, Huang CL, You MS, Kuo YP, Wang CM, Wen ZH, Yu GY, Chen CT, Chi YH, Tung CW, Hsu SC, Yeh TK, Sung PJ, Zhang MM, Tsou LK. Orally Bioavailable and Site-Selective Covalent STING Inhibitor Derived from a Macrocyclic Marine Diterpenoid. J Med Chem 2025; 68:5471-5487. [PMID: 40014799 PMCID: PMC11912488 DOI: 10.1021/acs.jmedchem.4c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Pharmacological inhibition of the cGAS-STING-controlled innate immune pathway is an emerging therapeutic strategy for a myriad of inflammatory diseases. Here, we report GHN105 as an orally bioavailable covalent STING inhibitor. Late-stage diversification of the briarane-type diterpenoid excavatolide B allowed the installation of solubility-enhancing functional groups while enhancing its activity as a covalent STING inhibitor against multiple human STING variants, including the S154 variant responsible for a genetic autoimmune disease. Selectively engaging the membrane-proximal Cys91 residue of STING, GHN105 dose-dependently inhibited cGAS-STING signaling and type I interferon responses in cells and in vivo. Moreover, orally administered GHN105 exhibited on-target engagement in vivo and markedly reversed key pathological features in a delayed treatment of the acute colitis mouse model. Our study provided proof of concept that the synthetic briarane analog GHN105 serves as a safe, site-selective, and orally active covalent STING inhibitor and devises a regimen that allows long-term systemic administration.
Collapse
Affiliation(s)
- Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Wan-Chi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Hsun Lee
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-Guo Zheng
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
| | - Yu-Shao Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chih-Chien Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yi-Ping Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chien-Ming Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| |
Collapse
|
3
|
Li X, Hu X, You H, Zheng K, Tang R, Kong F. Regulation of pattern recognition receptor signaling by palmitoylation. iScience 2025; 28:111667. [PMID: 39877903 PMCID: PMC11772949 DOI: 10.1016/j.isci.2024.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules. Here, we discuss the available knowledge on the biological roles and underlying mechanisms linked to protein palmitoylation in modulating PRRs and their downstream signaling pathways under physiological and pathological conditions. Moreover, recent advances in the use of palmitoylation as an attractive therapeutic target for disorders caused by the dysregulation of PRRs were summarized.
Collapse
Affiliation(s)
- Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaofang Hu
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Zhang SD, Li H, Zhou YL, Liu XC, Li DC, Hao CF, You QD, Xu XL. Protein-protein interactions in cGAS-STING pathway: a medicinal chemistry perspective. Future Med Chem 2024; 16:1801-1820. [PMID: 39263789 PMCID: PMC11457635 DOI: 10.1080/17568919.2024.2383164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
Protein-protein interactions (PPIs) play pivotal roles in biological processes and are closely linked with human diseases. Research on small molecule inhibitors targeting PPIs provides valuable insights and guidance for novel drug development. The cGAS-STING pathway plays a crucial role in regulating human innate immunity and is implicated in various pathological conditions. Therefore, modulators of the cGAS-STING pathway have garnered extensive attention. Given that this pathway involves multiple PPIs, modulating PPIs associated with the cGAS-STING pathway has emerged as a promising strategy for modulating this pathway. In this review, we summarize an overview of recent advancements in medicinal chemistry insights into cGAS-STING PPI-based modulators and propose alternative strategies for further drug discovery based on the cGAS-STING pathway.
Collapse
Affiliation(s)
- Shi-Duo Zhang
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye-Ling Zhou
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Chun Liu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - De-Chang Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chuan-Feng Hao
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
5
|
Liu Y, Zhao J, Hong R. Toward the Briarane Core via 1,3-Dipolar Cycloaddition. Org Lett 2024. [PMID: 38804559 DOI: 10.1021/acs.orglett.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The complete C20 framework of brianthein W was established, featuring hydroboration/allylation, to provide the C1-C2 quaternary/tertiary stereoarray with excellent stereocontrol. Intramolecular nitrile oxide cycloaddition (INOC) was adopted as the key transformation to establish the trans-fused 6/10-bicyclic ring system. Evolution of the second INOC event revealed the intricacies governing regioselectivity, which ultimately led to construction of the highly strained 10-membered carbocycle.
Collapse
Affiliation(s)
- Yichen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jiangang Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ran Hong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
6
|
Chen HW, Liu FC, Kuo HM, Tang SH, Niu GH, Zhang MM, Tsou LK, Sung PJ, Wen ZH. Immunomodulatory and anti-angiogenesis effects of excavatolide B and its derivatives in alleviating atopic dermatitis. Biomed Pharmacother 2024; 172:116279. [PMID: 38368838 DOI: 10.1016/j.biopha.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition primarily driven by T helper 2 (Th2) cytokines, resulting in skin barrier defects, angiogenesis, and inflammatory responses. The marine natural product excavatolide B (EXCB), isolated from the Formosan Gorgonian coral Briareum stechei, exhibits anti-inflammatory and analgesic properties. To enhance solubility, EXCB is chemically modified into the derivatives EXCB-61 salt and EXCB-79. The study aims to investigate the therapeutic effects of these compounds on dinitrochlorbenzene (DNCB)-induced skin damage and to elucidate the underlying anti-inflammatory and anti-angiogenesis mechanism. In vitro, using lipopolysaccharide (LPS)-induced RAW 264.7 cells, all compounds at 10 μM significantly inhibited expression of inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2), vascular endothelial growth factor (VEGF), and cytokines (interleukin (IL)-1β, IL-6, and IL-17A). In vivo, topical application of these compounds on DNCB-induced AD mice alleviated skin symptoms, reduced serum levels of IgE, IL-4, IL-13, IL-17, and interferon-γ, and moderated histological phenomena such as hyperplasia, inflammatory cell infiltration, and angiogenesis. The three compounds restored the expression of skin barrier-related proteins (loricrin, filaggrin, and claudin-1) and reduced the expression of angiogenesis-related proteins (VEGF and platelet endothelial cell adhesion molecule-CD31) in the tissues. This is the first study to indicate that EXCB, EXCB-61 salt, and EXCB-79 can treat AD disease by reducing inflammation and angiogenesis. Hence, they may be considered potential candidates for the development of new drugs for AD.
Collapse
Affiliation(s)
- Hsiu-Wen Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Shih-Hsuan Tang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|