1
|
Xu Z, Wu J, Li Y, Zhou J, Zhang Y, Qiao M, Feng Y, Sun H, Li Z, Li L, Oyelami FO, Peng X, Mei S. A Single-Cell Atlas of Porcine Skeletal Muscle Reveals Mechanisms That Regulate Intramuscular Adipogenesis. Int J Mol Sci 2024; 25:12935. [PMID: 39684644 DOI: 10.3390/ijms252312935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Porcine skeletal muscle development is closely linked to meat production efficiency and quality. The accumulation of porcine intramuscular fat is influenced by the hyperplasia and hypertrophy of adipocytes within the muscle. However, the cellular profiles corresponding to the two stages of muscle development remain undetermined. Single-nucleus RNA sequencing (snRNA-seq) can elucidate cell subsets in tissues, capture gene expression at the individual cell level, and provide innovative perspectives for studying muscle and intramuscular fat formation. In this study, a total of 78,302 nuclei and 9 clusters of cells, which included fibro/adipogenic progenitor (FAP), myonuclei, adipocytes, and other cell types, of Xidu black pigs, were identified on Day 1 and Day 180. The pattern of cell clustering varied between the two developmental stages. Notably, the percentage of adipocytes in the Day 180 group was higher than in the Day 1 group (0.51% vs. 0.15%). Pseudo-time sequence analysis indicated that FAPs could differentiate into adipocytes and myonuclei cells, respectively. The THRSP gene was identified as a biomarker for swine intramuscular fat cells, and its down-regulation resulted in significant reduction in lipid droplet formation in porcine preadipocytes. Our research provides new insights into the cellular characteristics of intramuscular fat formation, which may facilitate the development of novel strategies to enhance intramuscular fat deposition and improve pork quality.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yujie Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yue Feng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Favour Oluwapelumi Oyelami
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
2
|
Quevedo-Cascante M, Dorca-Preda T, Mogensen L, Zollitsch W, Waqas MA, Hörtenhuber S, Geßl R, Kongsted AG, Knudsen MT. Life cycle assessment and modeling approaches in silvopastoral systems: A case study of egg production integrated in an organic apple orchard. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123377. [PMID: 39581006 DOI: 10.1016/j.jenvman.2024.123377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
This paper aimed to assess the environmental impacts of two organic silvopastoral farms in Austria, using a Life Cycle Assessment approach. The two farms (F1, F2), with egg production integrated into an apple orchard, were compared to standard practices for each product. The functional unit was '1 kg fresh Class I apples' and '1 kg fresh Class I eggs'. The assessment covered two scopes: cradle-to-farm gate and cradle-to-retail for each product. Effects on climate (including carbon sequestration in the soil and woody biomass), eutrophication potential (EP), acidification potential (AP), and land occupation (LO) were assessed. Feed, manure, and land were three resource loops included in the system boundary. Two modeling approaches were used from cradle-to-farm gate for distributing the impacts of the entire system between apples and eggs: model 1 (M1) used economic allocation, while model 2 (M2) divided the system into two subsystems. Results varied considerably by model. M1 consistently showed higher impacts for apples and considerably lower for eggs compared to M2. At farm gate, the carbon footprint (CF) ranged from 0.09 to 0.17 kg CO2-eq/kg apple and 0.19-1.62 kg CO2-eq/kg egg across all analyzed systems and models. Carbon sequestration reduced emissions by 22-42% for apples and by 0.4-39% for eggs. Sequestration was mainly associated with the carbon contributions from plant biomass from apple production (84-99%), with manure contributing 0.7-9%. EP ranged from 0.19 to 1.7 g PO4-eq/kg apple and 0.7-35 g PO4-eq/kg egg and AP ranged from 0.8 to 2.9 g SO2-eq/kg apple and 2-36 g SO2-eq/kg egg across all analyzed systems and models. LO ranged from 0.3 to 0.6 m2/kg apple and 0.8-9 m2/kg egg across all analyzed systems and models. Post-harvest activities accounted for up to 29% of the total impacts for EP and AP, and up to 57% for CF from cradle-to-retail. In general, the impacts per kg egg or kg apple in F1 and F2 were lower in most impact categories relative to their reference systems, driven mainly by management factors and the production phase of the value chain. Further development of modeling approaches is needed.
Collapse
Affiliation(s)
| | | | - Lisbeth Mogensen
- Department of Agroecology, Aarhus University, DK-8830, Tjele, Denmark
| | - Werner Zollitsch
- Institute of Livestock Sciences, University of Natural Resources and Life Sciences, AT-1180, Vienna, Austria
| | | | - Stefan Hörtenhuber
- Institute of Livestock Sciences, University of Natural Resources and Life Sciences, AT-1180, Vienna, Austria
| | - Reinhard Geßl
- Institute of Livestock Sciences, University of Natural Resources and Life Sciences, AT-1180, Vienna, Austria
| | | | | |
Collapse
|
3
|
Lombardi SJ, Pannella G, Coppola F, Vergalito F, Maiuro L, Succi M, Sorrentino E, Tremonte P, Coppola R. Plant-Based Ingredients Utilized as Fat Replacers and Natural Antimicrobial Agents in Beef Burgers. Foods 2024; 13:3229. [PMID: 39456291 PMCID: PMC11507565 DOI: 10.3390/foods13203229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to find solutions based on the use of plant-based ingredients that would improve the nutritional quality of meat products as well as ensure sensory and microbiological quality. Two fat replacers, lemon albedo (Citrus lemon) and carob seed gum (Ceratonia siliqua), were investigated by chemical analysis and panel testing to evaluate their effect on the nutritional and sensory quality of beef burgers. The antimicrobial activity of two plant extracts, from nettle (Urtica dioica) leaves and medlar (Eriobotrya japonica) seeds, was studied, evaluating the intensity of inhibitory action and the minimum inhibitory concentration against Pseudomonas spp. and Listeria innocua strains by plate test. In addition, the antioxidant activity of both extracts was evaluated. Based on the results, lemon albedo and medlar seed extracts were validated in a food model (beef burger) by a storage test and a challenge test. The storage test results highlight that medlar seed extract prevents the formation of thiobarbituric acid reactive substances (TBARSs) and ensures microbiological quality, inhibiting Enterobacteriaceae and Pseudomonas spp. Anti-Listeria efficacy was confirmed in situ by challenge test results. In conclusion, although fat replacers ensure nutritional and sensory quality, they do not satisfy microbiological quality. This study clearly demonstrates that the safety of low-fat burgers can only be achieved through the combination of appropriate fat replacers with well-selected natural antimicrobial extracts.
Collapse
Affiliation(s)
- Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Gianfranco Pannella
- Department of Science and Technology for Sustainable Development and One Health, Università Campus-Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Francesca Coppola
- Institute of Food Science, National Research Council, Via Roma, 60, 83100 Avellino, Italy
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Lucia Maiuro
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| |
Collapse
|
4
|
Galli F, Moretti M. Narratives shaping the protein transition. NATURE FOOD 2024; 5:7-8. [PMID: 38195901 DOI: 10.1038/s43016-023-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Francesca Galli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Michele Moretti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Zhu G, Gao D, Li L, Yao Y, Wang Y, Zhi M, Zhang J, Chen X, Zhu Q, Gao J, Chen T, Zhang X, Wang T, Cao S, Ma A, Feng X, Han J. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nat Commun 2023; 14:8163. [PMID: 38071210 PMCID: PMC10710416 DOI: 10.1038/s41467-023-44001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.
Collapse
Affiliation(s)
- Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tong Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Wang L, Zhao X, Liu S, You W, Huang Y, Zhou Y, Chen W, Zhang S, Wang J, Zheng Q, Wang Y, Shan T. Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork. NPJ Sci Food 2023; 7:23. [PMID: 37268610 DOI: 10.1038/s41538-023-00203-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
Pork is the most consumed meat in the world, and its quality is associated with human health. Intramuscular fat (IMF) deposition (also called marbling) is a key factor positively correlated with various quality traits and lipo-nutritional values of meat. However, the cell dynamics and transcriptional programs underlying lipid deposition in highly marbled meat are still unclear. Here, we used Laiwu pigs with high (HLW) or low (LLW) IMF contents to explore the cellular and transcriptional mechanisms underlying lipid deposition in highly-marbled pork by single-nucleus RNA sequencing (snRNA-seq) and bulk RNA sequencing. The HLW group had higher IMF contents but less drip loss than the LLW group. Lipidomics results revelled the changes of overall lipid classes composition (e.g., glycerolipids including triglycerides, diglycerides, and monoglycerides; sphingolipids including ceramides and monohexose ceramide significantly increased) between HLW and LLW groups. SnRNA-seq revealed nine distinct cell clusters, and the HLW group had a higher percentage of adipocytes (1.40% vs. 0.17%) than the LLW group. We identified 3 subpopulations of adipocytes, including PDE4D+/PDE7B+ (in HLW and LLW), DGAT2+/SCD+ (mostly in HLW) and FABP5+/SIAH1+ cells (mostly in HLW). Moreover, we showed that fibro/adipogenic progenitors could differentiate into IMF cells and contribute to 43.35% of adipocytes in mice. In addition, RNA-seq revealed different genes involved in lipid metabolism and fatty acid elongation. Our study provides new insights into the cellular and molecular signatures of marbling formation; such knowledge may facilitate the development of new strategies to increase IMF deposition and the lipo-nutritional quality of high marbled pork.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xueyan Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Wang L, Zhang S, Huang Y, Zhou Y, Shan T. Conjugated linoleic acids inhibit lipid deposition in subcutaneous adipose tissue and alter lipid profiles in serum of pigs. J Anim Sci 2023; 101:skad294. [PMID: 37646838 PMCID: PMC10629446 DOI: 10.1093/jas/skad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
Conjugated linoleic acids (CLAs) have served as a nutritional strategy to reduce fat deposition in adipose tissues of pigs. However, the effects of CLAs on lipid profiles in serum and how these lipid molecules regulate fat deposition are still unclear. In this study, we explored the effects of CLAs on regulating lipid deposition in adipose tissues in terms of lipid molecules and microbiota based on a Heigai pig model. A total of 56 Heigai finishing pigs (body weight: 85.58 ± 10.39 kg) were randomly divided into two treatments and fed diets containing 1% soyabean oil or 1% CLAs for 40 d. CLAs reduced fat deposition and affected fatty acids composition in adipose tissues of Heigai pigs via upregulating the expression of the lipolytic gene (hormone-sensitive lipase, HSL) in vivo and in vitro. CLAs also altered the biochemical immune indexes including reduced content of total cholesterol (TChol), high-density lipoprotein (HDL-C), and low-density lipoprotein (LDL-C) and changed lipids profiles including decreased sphingolipids especially ceramides (Cers) and sphingomyelins (SMs) in serum of Heigai pigs. Mechanically, CLAs may decrease peroxisome proliferator-activated receptorγ (PPARγ) expression and further inhibit adipogenic differentiation in adipose tissues of pigs by suppressing the function of Cers in serum. Furthermore, Pearson's correlation analysis showed HSL expression was positively related to short-chain fatty acids (SCFAs) in the gut (P ≤ 0.05) but the abundance of Cers was negatively related to the production and functions of SCFAs (P ≤ 0.05). CLAs altered the distribution of the lipid in serum and inhibited adipogenic differentiation by suppressing the function of Cers and further decreasing PPARγ expression in adipose tissues of Heigai pigs. Besides, the HSL expression and the abundance of Cers are associated with the production and functions of SCFAs in the gut.
Collapse
Affiliation(s)
- Liyi Wang
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, College of Animal Sciences, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Hangzhou, Zhejiang 310058, China
| | - Shu Zhang
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, College of Animal Sciences, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Hangzhou, Zhejiang 310058, China
| | - Yuqin Huang
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, College of Animal Sciences, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Hangzhou, Zhejiang 310058, China
| | - Yanbing Zhou
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, College of Animal Sciences, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Hangzhou, Zhejiang 310058, China
| | - Tizhong Shan
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, College of Animal Sciences, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
de Boer J, Aiking H. Pro-environmental food practices in EU countries strongly suggest mutually reinforcing improvements in gender equality and environmental sustainability. Appetite 2023; 180:106350. [PMID: 36270420 DOI: 10.1016/j.appet.2022.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Abstract
This paper seeks to understand how pro-environmental food practices among women and men in the EU can be supported by considering the interlinkages between gender equality and environmental sustainability. A special aspect is that the role of gender equality is interpreted in terms of Schwartz's theory on national cultural values, which relates gender equality to cultures that emphasize intellectual autonomy and egalitarianism. The paper investigated how pro-environmental food practices (including meat reduction) among women and men correlated with their countries' national income level and its level of gender equality. It was a multilevel analysis of survey data from 27 countries (Eurobarometer 95.1, Spring 2021). Considering that studies about gender equality and the environment often find problematically high correlations between gender equality and national income, this study focused on political gender equality (i.e. women's representation in parliament), which had desirable characteristics. National income and political gender equality had complementary impacts on the adoption of pro-environmental food practices (including meat reduction). Men reported more target practices when living in richer countries; the same applied even more strongly to women when living in richer and more politically gender-balanced countries. It was concluded that women may have developed more autonomy by, inter alia, adopting pro-environmental food practices. At the level of individual behavior, this illustrates "mutually reinforcing dynamics" in the pursuit of gender equality and environmental sustainability goals.
Collapse
Affiliation(s)
- Joop de Boer
- Institute for Environmental Studies, VU University, Amsterdam, the Netherlands.
| | - Harry Aiking
- Institute for Environmental Studies, VU University, Amsterdam, the Netherlands
| |
Collapse
|
9
|
De Groeve B, Bleys B, Hudders L. Ideological resistance to veg*n advocacy: An identity-based motivational account. Front Psychol 2022; 13:996250. [PMID: 36533047 PMCID: PMC9749860 DOI: 10.3389/fpsyg.2022.996250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Animal-based diets in Western countries are increasingly regarded as unsustainable because of their impact on human health, environmental and animal welfare. Promoting shifts toward more plant-based diets seems an effective way to avoid these harms in practice. Nevertheless, claims against the consumption of animal products contradict the ideology of the omnivorous majority known as carnism. Carnism supports animal-product consumption as a cherished social habit that is harmless and unavoidable and invalidates minorities with plant-based diets: vegetarians and vegans (veg*ns). In this theoretical review, we integrate socio-psychological and empirical literature to provide an identity-based motivational account of ideological resistance to veg*n advocacy. Advocates who argue against the consumption of animal products often make claims that it is harmful, and avoidable by making dietary changes toward veg*n diets. In response, omnivores are likely to experience a simultaneous threat to their moral identity and their identity as consumer of animal products, which may arouse motivations to rationalize animal-product consumption and to obscure harms. If omnivores engage in such motivated reasoning and motivated ignorance, this may also inform negative stereotyping and stigmatization of veg*n advocates. These "pro-carnist" and "counter-veg*n" defenses can be linked with various personal and social motivations to eat animal products (e.g., meat attachment, gender, speciesism) and reinforce commitment to and ambivalence about eating animal products. This does not mean, however, that veg*n advocates cannot exert any influence. An apparent resistance may mask indirect and private acceptance of advocates' claims, priming commitment to change behavior toward veg*n diets often at a later point in time. Based on our theoretical account, we provide directions for future research.
Collapse
Affiliation(s)
- Ben De Groeve
- Center for Persuasive Communication, Department of Communication Sciences, Ghent University, Ghent, Belgium
| | - Brent Bleys
- Department of Economics, Ghent University, Ghent, Belgium
| | - Liselot Hudders
- Center for Persuasive Communication, Department of Communication Sciences, Ghent University, Ghent, Belgium
- Department of Marketing, Innovation and Organisation, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Affiliation(s)
- Maeve M Henchion
- Department Agrifood Business and Spatial Analysis, REDP, Teagasc Ashtown Food Research Centre, Dublin, Ireland.
| |
Collapse
|