1
|
Talukdar PD, Pramanik K, Gatti P, Mukherjee P, Ghosh D, Roy H, Germain M, Chatterji U. Precise targeting of transcriptional co-activators YAP/TAZ annihilates chemoresistant brCSCs by alteration of their mitochondrial homeostasis. Signal Transduct Target Ther 2025; 10:61. [PMID: 39979255 PMCID: PMC11842803 DOI: 10.1038/s41392-025-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Persistence of drug-resistant breast cancer stem cells (brCSCs) after a chemotherapeutic regime correlates with disease recurrence and elevated mortality. Therefore, deciphering mechanisms that dictate their drug-resistant phenotype is imperative for designing targeted and more effective therapeutic strategies. The transcription factor SOX2 has been recognized as a protagonist in brCSC maintenance, and previous studies have confirmed that inhibition of SOX2 purportedly eliminated these brCSCs. However, pharmacological targeting of transcription factors like SOX2 is challenging due to their structural incongruities and intrinsic disorders in their binding interfaces. Therefore, transcriptional co-activators may serve as a feasible alternative for effectively targeting the brCSCs. Incidentally, transcriptional co-activators YAP/TAZ were found to be upregulated in CD44+/CD24-/ALDH+ cells isolated from patient breast tumors and CSC-enriched mammospheres. Interestingly, it was observed that YAP/TAZ exhibited direct physical interaction with SOX2 and silencing YAP/TAZ attenuated SOX2 expression in mammospheres, leading to significantly reduced sphere forming efficiency and cell viability. YAP/TAZ additionally manipulated redox homeostasis and regulated mitochondrial dynamics by restraining the expression of the mitochondrial fission marker, DRP1. Furthermore, YAP/TAZ inhibition induced DRP1 expression and impaired OXPHOS, consequently inducing apoptosis in mammospheres. In order to enhance clinical relevance of the study, an FDA-approved drug verteporfin (VP), was used for pharmacological inhibition of YAP/TAZ. Surprisingly, VP administration was found to reduce tumor-initiating capacity of the mammospheres, concomitant with disrupted mitochondrial homeostasis and significantly reduced brCSC population. Therefore, VP holds immense potential for repurposing and decisively eliminating the chemoresistant brCSCs, offering a potent strategy for managing tumor recurrence effectively.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Kunal Pramanik
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Himansu Roy
- Department of Surgery, Medical College, Kolkata, India
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Amissah HA, Antwi MH, Amissah TA, Combs SE, Shevtsov M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025; 14:204. [PMID: 39936995 DOI: 10.3390/cells14030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The epichaperome, a dynamic and integrated network of chaperone proteins, extends its roles beyond basic protein folding to protein stabilization and intracellular signal transduction to orchestrating a multitude of cellular processes critical for tumor survival. In this review, we explore the multifaceted roles of the epichaperome, delving into its diverse cellular locations, factors that modulate its formation and function, its liquid-liquid phase separation, and the key signaling and crosstalk pathways it regulates, including cellular metabolism and intracellular signal transduction. We further highlight techniques for isolating and identifying epichaperome networks, pitfalls, and opportunities. Further, we review the profound implications of the epichaperome for cancer treatment and therapy design, underscoring the need for strategic engineering that hinges on a comprehensive insight into the comprehensive structure and workings of the epichaperome across the heterogeneous cell subpopulations in the tumor milieu. By presenting a holistic view of the epichaperome's functions and mechanisms, we aim to underscore its potential as a key target for novel anti-cancer strategies, revealing that the epichaperome is not merely a piece of protein folding machinery but a mastermind that facilitates the malignant phenotype.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, Winneba CE-122-2486, Central Region, Ghana
| | - Maxwell Hubert Antwi
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana
| | - Tawfeek Ahmed Amissah
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Saint Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
3
|
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G, Bunda S. It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol 2025:10.1007/s11060-024-04930-w. [PMID: 39821893 DOI: 10.1007/s11060-024-04930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK signaling pathway is one of the most tumorigenic pathways in cancer, with its hyperactivation strongly linked to the aggressive nature of glioblastoma (GBM). Although extensive research has focused on developing therapeutics targeting this pathway, clinical success remains elusive due to the emergence of resistance mechanisms. OBJECTIVE This review investigates how inhibition of the RTK/Ras/Raf/MEK/ERK pathway alters transcription factors, contributing to acquired resistance mechanisms in GBM. It also highlights the critical role of transcription factor dysregulation in therapeutic resistance. METHODS & RESULTS Findings from key studies on the RTK/Ras/Raf/MEK/ERK pathway in GBM were synthesized to explore the role of transcription factor dysregulation in resistance to targeted therapies, radiation, and chemotherapy. The review highlights that transcription factors undergo significant dysregulation following RTK/Ras/Raf/MEK/ERK pathway inhibition, contributing to therapeutic resistance. CONCLUSION Transcription factors are promising targets for overcoming treatment resistance in GBM, with cotreatment strategies combining RTK/Ras/Raf/MEK/ERK pathway inhibitors and transcription factor-targeted therapies presenting a novel approach. Despite the challenges of targeting complex structures and interactions, advancements in drug development and precision technologies hold great potential. Continued research is essential to refine these strategies and improve outcomes for GBM and other aggressive cancers.
Collapse
Affiliation(s)
- Rebeca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Phooja Persaud
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna McCracken
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
4
|
Taylor OB, El-Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Massachusetts, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Kim J, Kim H, Kim J, Cho SY, Moon S, Yoo Y, Kim H, Kim JK, Jeon H, Namkung W, Han G, No KT. Pan-Transcriptional Enhanced Associated Domain Palmitoylation Pocket Covalent Inhibitor. J Med Chem 2024; 67:18957-18968. [PMID: 39487823 DOI: 10.1021/acs.jmedchem.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In the Hippo signaling pathway, the palmitoylated transcriptional enhanced associated domain (TEAD) protein interacts with the coactivator Yes-associated protein/PDZ-binding motif, leading to transcriptional upregulation of oncogenes such as Ctgf and Cyr61. Consequently, targeting the palmitoylation sites of TEAD has emerged as a promising strategy for treating TEAD-dependent cancers. Compound 1 was identified using a structure-based drug design approach, leveraging the molecular insights gained from the known TEAD palmitoylation site inhibitor, K-975. Optimization of the initial hit compound resulted in the development of compound 3, a covalent pan-TEAD inhibitor characterized by high potency and oral bioavailability.
Collapse
Affiliation(s)
- Jinhyuk Kim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hadong Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Jongwan Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Seon Yeon Cho
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Sungho Moon
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Youngki Yoo
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hanseong Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Jin Kwan Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hyejin Jeon
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Wan Namkung
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Postech Biotech Center, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Kyoung Tai No
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
- Institute of Convergence Science and Technology, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
6
|
Iyer VJ, Donahue JE, Osman MA. Role of scaffold proteins in the heterogeneity of glioblastoma. Cell Commun Signal 2024; 22:477. [PMID: 39375741 PMCID: PMC11457365 DOI: 10.1186/s12964-024-01809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
Glioblastoma (GB) is a highly heterogeneous type of incurable brain cancer with a low survival rate. Intensive ongoing research has identified several potential targets; however, GB is marred by the activation of multiple pathways, and thus common targets are highly sought. The signal regulatory scaffold IQGAP1 is an oncoprotein implicated in GB. IQGAP1 nucleates a myriad of pathways in a contextual manner and modulates many of the targets altered in GB like MAPK, NF-κB, and mTOR/PI3K/Akt1, thus positioning it as a plausible common therapeutic target. Here, we review the targets that are subjects of GB treatment clinical trials and the commonly used animal models that facilitate target identification. We propose a model in which the dysfunction of various IQGAP1 pathways can explain to a larger extent some of the GB heterogeneity and offer a platform for personalized medicine.
Collapse
Affiliation(s)
- Varun J Iyer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - John E Donahue
- Division of Neuropathology, Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mahasin A Osman
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
7
|
Qin X, Tape CJ. Functional analysis of cell plasticity using single-cell technologies. Trends Cell Biol 2024; 34:854-864. [PMID: 38355348 DOI: 10.1016/j.tcb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metazoan organisms are heterocellular systems composed of hundreds of different cell types, which arise from an isogenic genome through differentiation. Cellular 'plasticity' further enables cells to alter their fate in response to exogenous cues and is involved in a variety of processes, such as wound healing, infection, and cancer. Recent advances in cellular model systems, high-dimensional single-cell technologies, and lineage tracing have sparked a renaissance in plasticity research. Here, we discuss the definition of cell plasticity, evaluate state-of-the-art model systems and techniques to study cell-fate dynamics, and explore the application of single-cell technologies to obtain functional insights into cell plasticity in healthy and diseased tissues. The integration of advanced biomimetic model systems, single-cell technologies, and high-throughput perturbation studies is enabling a new era of research into non-genetic plasticity in metazoan systems.
Collapse
Affiliation(s)
- Xiao Qin
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
8
|
Villares E, Gerecht S. Engineered Biomaterials and Model Systems to Study YAP/TAZ in Cancer. ACS Biomater Sci Eng 2024; 10:5550-5561. [PMID: 39190867 DOI: 10.1021/acsbiomaterials.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The transcriptional coactivators yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are master regulators involved in a multitude of cancer types and a wide range of tumorigenic events, including cancer stem cell renewal, invasion, metastasis, tumor precursor emergence, and drug resistance. YAP/TAZ are known to be regulated by several external cues and stimuli, such as extracellular matrix stiffness, cell spreading, cell geometry, and shear stress. Therefore, there is a need in the field of cancer research to develop and design relevant in vitro models that can accurately reflect the complex biochemical and biophysical cues of the tumor microenvironment central to the YAP/TAZ signaling nexus. While much progress has been made, this remains a major roadblock to advancing research in this field. In this review, we highlight the current engineered biomaterials and in vitro model systems that can be used to advance our understanding of how YAP/TAZ shapes several aspects of cancer. We begin by discussing current 2D and 3D hydrogel systems that model the YAP/TAZ response to ECM stiffness. We then examine the current trends in organoid culture systems and the use of microfluidics to model the effects of cellular density and shear stress on YAP/TAZ. Finally, we analyze the ongoing pitfalls of the present models used and important future directions in engineering systems that will advance our current knowledge of YAP/TAZ in cancer.
Collapse
Affiliation(s)
- Emma Villares
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705, United States
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
9
|
Renoult O, Laurent--Blond M, Awada H, Oliver L, Joalland N, Croyal M, Paris F, Gratas C, Pecqueur C. Metabolic profiling of glioblastoma stem cells reveals pyruvate carboxylase as a critical survival factor and potential therapeutic target. Neuro Oncol 2024; 26:1572-1586. [PMID: 38869884 PMCID: PMC11376449 DOI: 10.1093/neuonc/noae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive tumor with unmet therapeutic needs, which can be explained by extensive intra-tumoral heterogeneity and plasticity. In this study, we aimed to investigate the specific metabolic features of Glioblastoma stem cells (GSC), a rare tumor subpopulation involved in tumor growth and therapy resistance. METHODS We conducted comprehensive analyses of primary patient-derived GBM cultures and GSC-enriched cultures of human GBM cell lines using state-of-the-art molecular, metabolic, and phenotypic studies. RESULTS We showed that GSC-enriched cultures display distinct glycolytic profiles compared with differentiated tumor cells. Further analysis revealed that GSC relies on pyruvate carboxylase (PC) activity for survival and self-renewal capacity. Interestingly, inhibition of PC led to GSC death, particularly when the glutamine pool was low, and increased differentiation. Finally, while GSC displayed resistance to the chemotherapy drug etoposide, genetic or pharmacological inhibition of PC restored etoposide sensitivity in GSC, both in vitro and in orthotopic murine models. CONCLUSIONS Our findings demonstrate the critical role of PC in GSC metabolism, survival, and escape to etoposide. They also highlight PC as a therapeutic target to overcome therapy resistance in GBM.
Collapse
Affiliation(s)
- Ophélie Renoult
- Nantes Université, Inserm 1307, CNRS 6075, Université d’Angers, Nantes, France
| | | | - Hala Awada
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
- Nantes Université, Inserm 1307, CNRS 6075, Université d’Angers, Nantes, France
| | - Lisa Oliver
- Centre Hospitalier Universitaire de Nantes, Nantes, France
- Nantes Université, Inserm 1307, CNRS 6075, Université d’Angers, Nantes, France
| | - Noémie Joalland
- Nantes Université, Inserm 1307, CNRS 6075, Université d’Angers, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
- Université de Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - François Paris
- Institut de Cancérologie de l’Ouest, Saint-Herblain, France
- Nantes Université, Inserm 1307, CNRS 6075, Université d’Angers, Nantes, France
| | - Catherine Gratas
- Centre Hospitalier Universitaire de Nantes, Nantes, France
- Nantes Université, Inserm 1307, CNRS 6075, Université d’Angers, Nantes, France
| | - Claire Pecqueur
- Nantes Université, Inserm 1307, CNRS 6075, Université d’Angers, Nantes, France
| |
Collapse
|
10
|
Graham K, Lienau P, Bader B, Prechtl S, Naujoks J, Lesche R, Weiske J, Kuehnlenz J, Brzezinka K, Potze L, Zanconato F, Nicke B, Montebaur A, Bone W, Golfier S, Kaulfuss S, Kopitz C, Pilari S, Steuber H, Hayat S, Kamburov A, Steffen A, Schlicker A, Buchgraber P, Braeuer N, Font NA, Heinrich T, Kuhnke L, Nowak-Reppel K, Stresemann C, Steigemann P, Walter AO, Blotta S, Ocker M, Lakner A, von Nussbaum F, Mumberg D, Eis K, Piccolo S, Lange M. Discovery of YAP1/TAZ pathway inhibitors through phenotypic screening with potent anti-tumor activity via blockade of Rho-GTPase signaling. Cell Chem Biol 2024; 31:1247-1263.e16. [PMID: 38537632 DOI: 10.1016/j.chembiol.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 07/21/2024]
Abstract
This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.
Collapse
Affiliation(s)
- Keith Graham
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Benjamin Bader
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Prechtl
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Jan Naujoks
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Joerg Weiske
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Julia Kuehnlenz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Krzysztof Brzezinka
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Lisette Potze
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Barbara Nicke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Anna Montebaur
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Wilhelm Bone
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sven Golfier
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Kaulfuss
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Charlotte Kopitz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sabine Pilari
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Holger Steuber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sikander Hayat
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Atanas Kamburov
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Schlicker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Philipp Buchgraber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Nico Braeuer
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Nuria Aiguabella Font
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Tobias Heinrich
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Lara Kuhnke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Katrin Nowak-Reppel
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Patrick Steigemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Annette O Walter
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Simona Blotta
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Matthias Ocker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Ashley Lakner
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Martin Lange
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
11
|
Otani Y, Katayama H, Zhu Y, Huang R, Shigehira T, Shien K, Suzawa K, Yamamoto H, Shien T, Toyooka S, Fujimura A. Adrenergic microenvironment driven by cancer-associated Schwann cells contributes to chemoresistance in patients with lung cancer. Cancer Sci 2024; 115:2333-2345. [PMID: 38676373 PMCID: PMC11247558 DOI: 10.1111/cas.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Doublecortin (DCX)-positive neural progenitor-like cells are purported components of the cancer microenvironment. The number of DCX-positive cells in tissues reportedly correlates with cancer progression; however, little is known about the mechanism by which these cells affect cancer progression. Here we demonstrated that DCX-positive cells, which are found in all major histological subtypes of lung cancer, are cancer-associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer cells by establishing an adrenergic microenvironment. Mechanistically, the activation of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS and DCX positivity. We further revealed that CAS express catecholamine-synthesizing enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which drive the formation of an adrenergic microenvironment by the reciprocal regulation of YAP/TAZ in lung cancer tissues.
Collapse
Affiliation(s)
- Yusuke Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Haruyoshi Katayama
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Rongsheng Huang
- Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Takafumi Shigehira
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tadahiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
12
|
Bai J, Chen Y, Sun Y, Wang X, Wang Y, Guo S, Shang Z, Shao Z. EphA2 promotes the transcription of KLF4 to facilitate stemness in oral squamous cell carcinoma. Cell Mol Life Sci 2024; 81:278. [PMID: 38916835 PMCID: PMC11335203 DOI: 10.1007/s00018-024-05325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
Ephrin receptor A2 (EphA2), a member of the Ephrin receptor family, is closely related to the progression of oral squamous cell carcinoma (OSCC). Cancer stem cells (CSCs) play essential roles in OSCC development and occurrence. The underlying mechanisms between EphA2 and CSCs, however, are not yet fully understood. Here, we found that EphA2 was overexpressed in OSCC tissues and was associated with poor prognosis. Knockdown of EphA2 dampened the CSC phenotype and the tumour-initiating frequency of OSCC cells. Crucially, the effects of EphA2 on the CSC phenotype relied on KLF4, a key transcription factor for CSCs. Mechanistically, EphA2 activated the ERK signalling pathway, promoting the nuclear translocation of YAP. Subsequently, YAP was bound to TEAD3, leading to the transcription of KLF4. Overall, our findings revealed that EphA2 can enhance the stemness of OSCC cells, and this study identified the EphA2/KLF4 axis as a potential target for treating OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Lv X, Wang B, Liu K, Li MJ, Yi X, Wu X. Decoding heterogeneous and coordinated tissue architecture in glioblastoma using spatial transcriptomics. iScience 2024; 27:110064. [PMID: 38947514 PMCID: PMC11214485 DOI: 10.1016/j.isci.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal brain tumors, characterized by profound heterogeneity. While single-cell transcriptomic studies have revealed extensive intra-tumor heterogeneity, shed light on intra-tumor diversity, spatial intricacies remain largely unexplored. Leveraging clinical GBM specimens, this study employs spatial transcriptomics technology to delve into gene expression heterogeneity. Our investigation unveils a significant enrichment of tissue stem cell signature in regions bordering necrosis and the peritumoral area, positively correlated with the mesenchymal subtype signature. Moreover, upregulated genes in these regions are linked with extracellular matrix (ECM)-receptor interaction, proteoglycans, as well as vascular endothelial growth factor (VEGF) and angiopoietin-Tie (ANGPT) signaling pathways. In contrast, signatures related to glycogen metabolism and oxidative phosphorylation show no relevance to pathological zoning, whereas creatine metabolism signature is notably exclusive to vascular-enriched areas. These spatial profiles not only offer valuable references but also pave the way for future in-depth functional and mechanistic investigations into GBM progression.
Collapse
Affiliation(s)
- Xuejiao Lv
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bo Wang
- Department of Neurosurgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin 300350, China
| | - Kunlun Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
14
|
Haddad N, Gamaethige SM, Wehida N, Elbediwy A. Drug Repurposing: Exploring Potential Anti-Cancer Strategies by Targeting Cancer Signalling Pathways. BIOLOGY 2024; 13:386. [PMID: 38927266 PMCID: PMC11200741 DOI: 10.3390/biology13060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The repurposing of previously clinically approved drugs as an alternative therapeutic approach to treating disease has gained significant attention in recent years. A multitude of studies have demonstrated various and successful therapeutic interventions with these drugs in a wide range of neoplastic diseases, including multiple myeloma, leukaemia, glioblastoma, and colon cancer. Drug repurposing has been widely encouraged due to the known efficacy, safety, and convenience of already established drugs, allowing the bypass of the long and difficult road of lead optimization and drug development. Repurposing drugs in cancer therapy is an exciting prospect due to the ability of these drugs to successfully target cancer-associated genes, often dysregulated in oncogenic signalling pathways, amongst which are the classical cancer signalling pathways; WNT (wingless-related integration type) and Hippo signalling. These pathways play a fundamental role in controlling organ size, tissue homeostasis, cell proliferation, and apoptosis, all hallmarks of cancer initiation and progression. Prolonged dysregulation of these pathways has been found to promote uncontrolled cellular growth and malignant transformation, contributing to carcinogenesis and ultimately leading to malignancy. However, the translation of cancer signalling pathways and potential targeted therapies in cancer treatment faces ongoing challenges due to the pleiotropic nature of cancer cells, contributing to resistance and an increased rate of incomplete remission in patients. This review provides analyses of a range of potential anti-cancer compounds in drug repurposing. It unravels the current understanding of the molecular rationale for repurposing these drugs and their potential for targeting key oncogenic signalling pathways.
Collapse
Affiliation(s)
| | | | - Nadine Wehida
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| |
Collapse
|
15
|
Li K, Li H, He A, Zhang G, Jin Y, Cai J, Ye C, Qi L, Liu Y. Deciphering the role of transcription factors in glioblastoma cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1245-1255. [PMID: 38716541 PMCID: PMC11543521 DOI: 10.3724/abbs.2024061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 10/17/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Haichao Li
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Aonan He
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Gengqiang Zhang
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yuyao Jin
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Junbin Cai
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Chenle Ye
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Ling Qi
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
| |
Collapse
|
16
|
Sloan AR, Silver DJ, Kint S, Gallo M, Lathia JD. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro Oncol 2024; 26:785-795. [PMID: 38394444 PMCID: PMC11066900 DOI: 10.1093/neuonc/noae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Over the past 2 decades, the cancer stem cell (CSC) hypothesis has provided insight into many malignant tumors, including glioblastoma (GBM). Cancer stem cells have been identified in patient-derived tumors and in some mouse models, allowing for a deeper understanding of cellular and molecular mechanisms underlying GBM growth and therapeutic resistance. The CSC hypothesis has been the cornerstone of cellular heterogeneity, providing a conceptual and technical framework to explain this longstanding phenotype in GBM. This hypothesis has evolved to fit recent insights into how cellular plasticity drives tumor growth to suggest that CSCs do not represent a distinct population but rather a cellular state with substantial plasticity that can be achieved by non-CSCs under specific conditions. This has further been reinforced by advances in genomics, including single-cell approaches, that have used the CSC hypothesis to identify multiple putative CSC states with unique properties, including specific developmental and metabolic programs. In this review, we provide a historical perspective on the CSC hypothesis and its recent evolution, with a focus on key functional phenotypes, and provide an update on the definition for its use in future genomic studies.
Collapse
Affiliation(s)
- Anthony R Sloan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Daniel J Silver
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Sam Kint
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Justin D Lathia
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Castillo C, Grieco M, D'Amone S, Lolli MG, Ursini O, Cortese B. Hypoxia effects on glioblastoma progression through YAP/TAZ pathway regulation. Cancer Lett 2024; 588:216792. [PMID: 38453044 DOI: 10.1016/j.canlet.2024.216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The resistance of glioblastomas (GBM) to standard therapies poses a clinical challenge with limited survival despite interventions. The tumor microenvironment (TME) orchestrates GBM progression, comprising stromal and immune cells and is characterized by extensive hypoxic regions. Hypoxia activates the hypoxia-inducible factor 1 alpha (HIF-1α) pathway, interacting with the Hippo pathway (YAP/TAZ) in crucial cellular processes. We discuss here the related signaling crosstalk between YAP/TAZ and regions of hypoxia in the TME with particular attention on the MST1/2 and LATS1/2-regulated YAP/TAZ activation, impacting cell proliferation, invasion, and stemness. Moreover, the hypoxia-YAP/TAZ axis influence on angiogenesis, stem cells, and metabolic regulators is defined. By reviewing extracellular matrix alterations activation of YAP/TAZ, modulation of signaling pathways we also discuss the significance of spatial constraints and epigenetic modifications contribution to GBM progression, with potential therapeutic targets in YAP/TAZ-mediated gene regulation. Comprehensive understanding of the hypoxia-Hippo pathway-TME interplay offers insights for novel therapeutic strategies, aiming to provide new directions for treatment.
Collapse
Affiliation(s)
- Carolina Castillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Maddalena Grieco
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Stefania D'Amone
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
18
|
Kumar R, Hong W. Hippo Signaling at the Hallmarks of Cancer and Drug Resistance. Cells 2024; 13:564. [PMID: 38607003 PMCID: PMC11011035 DOI: 10.3390/cells13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance.
Collapse
Affiliation(s)
- Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore;
| | | |
Collapse
|
19
|
Zhu S, Wang X, Chen H, Zhu W, Li X, Cui R, Yi X, Chen X, Li H, Wang G. Hippo (YAP)-autophagy axis protects against hepatic ischemia-reperfusion injury through JNK signaling. Chin Med J (Engl) 2024; 137:657-668. [PMID: 37232477 PMCID: PMC10950187 DOI: 10.1097/cm9.0000000000002727] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) remains a common complication during liver transplantation (LT) in patients. As a key downstream effector of the Hippo pathway, Yes-associated protein (YAP) has been reported to be involved in various physiological and pathological processes. However, it remains elusive whether and how YAP may control autophagy activation during ischemia-reperfusion. METHODS Human liver tissues from patients who had undergone LT were obtained to evaluate the correlation between YAP and autophagy activation. Both an in vitro hepatocyte cell line and in vivo liver-specific YAP knockdown mice were used to establish the hepatic ischemia-reperfusion models to determine the role of YAP in the activation of autophagy and the mechanism of regulation. RESULTS Autophagy was activated in the post-perfusion liver grafts during LT in patients, and the expression of YAP positively correlated with the autophagic level of hepatocytes. Liver-specific knockdown of YAP inhibited hepatocytes autophagy upon hypoxia-reoxygenation and HIRI ( P <0.05). YAP deficiency aggravated HIRI by promoting the apoptosis of hepatocytes both in the in vitro and in vivo models ( P <0.05). Attenuated HIRI by overexpression of YAP was diminished after the inhibition of autophagy with 3-methyladenine. In addition, inhibiting autophagy activation by YAP knockdown exacerbated mitochondrial damage through increasing reactive oxygen species ( P <0.05). Moreover, the regulation of autophagy by YAP during HIRI was mediated by AP1 (c-Jun) N-terminal kinase (JNK) signaling through binding to the transcriptional enhanced associate domain (TEAD). CONCLUSIONS YAP protects against HIRI by inducing autophagy via JNK signaling that suppresses the apoptosis of hepatocytes. Targeting Hippo (YAP)-JNK-autophagy axis may provide a novel strategy for the prevention and treatment of HIRI.
Collapse
Affiliation(s)
- Shuguang Zhu
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaowen Wang
- Department of Hepatology lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Haoqi Chen
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wenfeng Zhu
- Department of Organ Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xuejiao Li
- Department of Hepatology lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Ruiwen Cui
- Department of Renal Transplantation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510630, China
| | - Xiaomeng Yi
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaolong Chen
- Department of Organ Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Hua Li
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Genshu Wang
- Department of Hepatic Surgery, Liver Transplantation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510630, China
| |
Collapse
|
20
|
Fu Z, Chen Z, Ye J, Ji J, Ni W, Lin W, Lin H, Lu L, Zhu G, Xie Q, Yan F, Chen G, Liu F. Identifying PLAUR as a Pivotal Gene of Tumor Microenvironment and Regulating Mesenchymal Phenotype of Glioblastoma. Cancers (Basel) 2024; 16:840. [PMID: 38398231 PMCID: PMC10887327 DOI: 10.3390/cancers16040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The mesenchymal (MES) phenotype of glioblastoma (GBM) is the most aggressive and therapy-resistant subtype of GBM. The MES phenotype transition during tumor progression results from both tumor-intrinsic genetic alterations and tumor-extrinsic microenvironmental factors. In this study, we sought to identify genes that can modulate the MES phenotype via both mechanisms. By integrating weighted gene co-expression network analysis (WGCNA) and the differential expression analysis of hypoxia-immunosuppression-related genes, we identified the plasminogen activator, urokinase receptor (PLAUR) as the hub gene. Functional enrichment analysis and GSVA analysis demonstrated that PLAUR was associated with the MES phenotype of glioma and the hypoxia-immunosuppression-related microenvironmental components. Single-cell sequencing analysis revealed that PLAUR mediated the ligand-receptor interaction between tumor-associated macrophages (TAMs) and glioma cells. Functional experiments in vitro with cell lines or primary glioma cells and xenograft models using BALB/c nude mice confirmed the role of PLAUR in promoting the MES phenotype of GBM. Our findings indicate that PLAUR regulates both glioma cells and tumor cell-extrinsic factors that favor the MES phenotype and suggest that PLAUR might be a potential target for GBM therapy.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jingya Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jianxiong Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weifang Ni
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weibo Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Haopu Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Liquan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Ganggui Zhu
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China;
| | - Qin Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| |
Collapse
|
21
|
Jin L, Jin A, Wang L, Qi X, Jin Y, Zhang C, Niu M. NRP1 Induces Enhanced Stemness and Chemoresistance in Glioma Cells via YAP. Biol Pharm Bull 2024; 47:166-174. [PMID: 38220212 DOI: 10.1248/bpb.b23-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Neuropilin-1 (NRP1), a transmembrane glycoprotein, plays an important role in the malignant progression of gliomas; however, its role in chemoresistance is not fully understood. In this study, we observed the effects of NRP1 on the stemness and chemoresistance of glioma cells and the mediating role of Yes-associated protein (YAP). We constructed NRP1 overexpressing LN-229 glioma cells. Cells were treated with recombinant NRP1 protein (rNRP1) and the YAP inhibitor Super-TDU when necessary. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the sensitivity of cells to temozolomide (TMZ). Sphere and clone formation assays were performed to detect the sphere- and clone-forming abilities of cells. Western blotting was performed to detect cellular CD133, CD44, p-LATS1, and p-YAP protein expression. Immunofluorescence and flow cytometry were used to detect the subcellular localization of YAP and apoptosis, respectively. We found that both NRP1 overexpression and rNRP1 treatment enhanced self-renewal, TMZ resistance, and CD133 and CD44 protein expression in LN-229 cells. NRP1 overexpression and rNRP1 treatment also induced LATS1 and YAP dephosphorylation and YAP nuclear translocation. Super-TDU inhibits NRP1 overexpression-induced enhanced self-renewal and TMZ resistance in LN-229 cells. Our study suggests that NRP1 induces increased stemness in glioma cells, resulting in chemoresistance, and that this effect is associated with YAP activation.
Collapse
Affiliation(s)
| | - Ai Jin
- Cangzhou People's Hospital
| | | | | | | | | | | |
Collapse
|
22
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Luís Â, Marcelino H, Domingues F, Pereira L, Cascalheira JF. Therapeutic Potential of Resveratrol for Glioma: A Systematic Review and Meta-Analysis of Animal Model Studies. Int J Mol Sci 2023; 24:16597. [PMID: 38068922 PMCID: PMC10706392 DOI: 10.3390/ijms242316597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Gliomas are aggressive malignant brain tumors, with poor prognosis despite available therapies, raising the necessity for finding new compounds with therapeutic action. Numerous preclinical investigations evaluating resveratrol's anti-tumor impact in animal models of glioma have been reported; however, the variety of experimental circumstances and results have prevented conclusive findings about resveratrol's effectiveness. Several databases were searched during May 2023, ten publications were identified, satisfying the inclusion criteria, that assess the effects of resveratrol in murine glioma-bearing xenografts. To determine the efficacy of resveratrol, tumor volume and animal counts were retrieved, and the data were then subjected to a random effects meta-analysis. The influence of different experimental conditions and publication bias on resveratrol efficacy were evaluated. Comparing treated to untreated groups, resveratrol administration decreased the tumor volume. Overall, the effect's weighted standardized difference in means was -2.046 (95%CI: -3.156 to -0.936; p-value < 0.001). The efficacy of the treatment was observed for animals inoculated with both human glioblastoma or rat glioma cells and for different modes of resveratrol administration. The combined administration of resveratrol and temozolomide was more effective than temozolomide alone. Reducing publication bias did not change the effectiveness of resveratrol treatment. The findings suggest that resveratrol slows the development of tumors in animal glioma models.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (H.M.); (F.D.); (J.F.C.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Helena Marcelino
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (H.M.); (F.D.); (J.F.C.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (H.M.); (F.D.); (J.F.C.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Luísa Pereira
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Departamento de Matemática, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
- Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - José Francisco Cascalheira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (H.M.); (F.D.); (J.F.C.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
24
|
Lemarié A, Lubrano V, Delmas C, Lusque A, Cerapio JP, Perrier M, Siegfried A, Arnauduc F, Nicaise Y, Dahan P, Filleron T, Mounier M, Toulas C, Cohen-Jonathan Moyal E. The STEMRI trial: Magnetic resonance spectroscopy imaging can define tumor areas enriched in glioblastoma stem-like cells. SCIENCE ADVANCES 2023; 9:eadi0114. [PMID: 37922359 PMCID: PMC10624352 DOI: 10.1126/sciadv.adi0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Despite maximally safe resection of the magnetic resonance imaging (MRI)-defined contrast-enhanced (CE) central tumor area and chemoradiotherapy, most patients with glioblastoma (GBM) relapse within a year in peritumoral FLAIR regions. Magnetic resonance spectroscopy imaging (MRSI) can discriminate metabolic tumor areas with higher recurrence potential as CNI+ regions (choline/N-acetyl-aspartate index >2) can predict relapse sites. As relapses are mainly imputed to glioblastoma stem-like cells (GSCs), CNI+ areas might be GSC enriched. In this prospective trial, 16 patients with GBM underwent MRSI/MRI before surgery/chemoradiotherapy to investigate GSC content in CNI-/+ biopsies from CE/FLAIR. Biopsy and derived-GSC characterization revealed a FLAIR/CNI+ sample enrichment in GSC and in gene signatures related to stemness, DNA repair, adhesion/migration, and mitochondrial bioenergetics. FLAIR/CNI+ samples generate GSC-enriched neurospheres faster than FLAIR/CNI-. Parameters assessing biopsy GSC content and time-to-neurosphere formation in FLAIR/CNI+ were associated with worse patient outcome. Preoperative MRI/MRSI would certainly allow better resection and targeting of FLAIR/CNI+ areas, as their GSC enrichment can predict worse outcomes.
Collapse
Affiliation(s)
- Anthony Lemarié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Vincent Lubrano
- TONIC, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Toulouse Neuro Imaging Center, Toulouse, France
- CHU de Toulouse, Neurosurgery Department, Toulouse, France
| | - Caroline Delmas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Interface Department, Toulouse, France
| | - Amélie Lusque
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Juan-Pablo Cerapio
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marion Perrier
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Aurore Siegfried
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- CHU de Toulouse, Anatomopathology Department, Toulouse, France
| | - Florent Arnauduc
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Yvan Nicaise
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Perrine Dahan
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Thomas Filleron
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, IUCT-Oncopole, Clinical Trials Office, Toulouse, France
| | - Christine Toulas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Cancer Biology Department, Molecular Oncology Division, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Radiation Oncology Department, Toulouse, France
| |
Collapse
|
25
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
26
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
27
|
Thrash HL, Pendergast AM. Multi-Functional Regulation by YAP/TAZ Signaling Networks in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4701. [PMID: 37835395 PMCID: PMC10572014 DOI: 10.3390/cancers15194701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial-mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.
Collapse
Affiliation(s)
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
28
|
Kong W, Huang Y, Jiang P, Tu Y, Li N, Wang J, Zhou Q, Zheng Y, Gou S, Tian C, Yuan R. YAP1 affects the prognosis through the regulation of stemness in endometrial cancer. PeerJ 2023; 11:e15891. [PMID: 37744228 PMCID: PMC10517666 DOI: 10.7717/peerj.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Endometrial cancer stem-like cells (ECSCs) have been proven to be responsible for recurrence, metastasis, and drug-resistance in patients with endometrial cancer. The HIPPO pathway has been shown to play an important role in the development and maintenance of stemness in a variety of tumors. While there was less research about its function in ECSCs. The aim of this study was to explore the role of YAP1, a core molecular of HIPPO pathway, in the stemness of endometrial cancer and to reveal its influence on prognosis. Methods We collected specimens and clinical data from 774 patients with endometrial cancer to analyze the correlation between YAP1 expression and prognosis. We then examined the expression of YAP1 in ECSCs and EC cell lines (Ishikawa; HEC1-A) in vitro experiments. Changes in the stemness of cell lines were detected after YAP1 silencing by siRNA. Finally, high-throughput sequencing was used to predict the potential molecular interactions and mechanisms of YAP1's effect on stemness. Result Down-regulation of YAP1 significantly suppresses the stemness of EC cell lines. High expression of YAP1 leads to poor prognosis in EC by regulation of stemness. Conclusion YAP1 plays an important role in the prognosis of patients with EC by regulation of stemness.
Collapse
Affiliation(s)
- Wei Kong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhen Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Tu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinyu Wang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhou
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Zheng
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shikai Gou
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenfan Tian
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yuan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
30
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
31
|
Wan Z, Zuo X, Wang S, Zhou L, Wen X, Yao Y, Song J, Gu J, Wang Z, Liu R, Luo C. Identification of angiogenesis-related genes signature for predicting survival and its regulatory network in glioblastoma. Cancer Med 2023; 12:17445-17467. [PMID: 37434432 PMCID: PMC10501277 DOI: 10.1002/cam4.6316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
Glioblastoma (GBM) is notorious for malignant neovascularization that contributes to undesirable outcome. However, its mechanisms remain unclear. This study aimed to identify prognostic angiogenesis-related genes and the potential regulatory mechanisms in GBM. RNA-sequencing data of 173 GBM patients were obtained from the Cancer Genome Atlas (TCGA) database for screening differentially expressed genes (DEGs), differentially transcription factors (DETFs), and reverse phase protein array (RPPA) chips. Differentially expressed genes from angiogenesis-related gene set were extracted for univariate Cox regression analysis to identify prognostic differentially expressed angiogenesis-related genes (PDEARGs). A risk predicting model was constructed based on 9 PDEARGs, namely MARK1, ITGA5, NMD3, HEY1, COL6A1, DKK3, SERPINA5, NRP1, PLK2, ANXA1, SLIT2, and PDPN. Glioblastoma patients were stratified into high-risk and low-risk groups according to their risk scores. GSEA and GSVA were applied to explore the possible underlying GBM angiogenesis-related pathways. CIBERSORT was employed to identify immune infiltrates in GBM. The Pearson's correlation analysis was performed to evaluate the correlations among DETFs, PDEARGs, immune cells/functions, RPPA chips, and pathways. A regulatory network centered by three PDEARGs (ANXA1, COL6A1, and PDPN) was constructed to show the potential regulatory mechanisms. External cohort of 95 GBM patients by immunohistochemistry (IHC) assay demonstrated that ANXA1, COL6A1, and PDPN were significantly upregulated in tumor tissues of high-risk GBM patients. Single-cell RNA sequencing also validated malignant cells expressed high levels of the ANXA1, COL6A1, PDPN, and key DETF (WWTR1). Our PDEARG-based risk prediction model and regulatory network identified prognostic biomarkers and provided valuable insight into future studies on angiogenesis in GBM.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaokun Zuo
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lei Zhou
- Department of OrthopedicsJinxian County People's HospitalNanchangChina
| | - Xiaojing Wen
- Department of InfectionJinxian County People's HospitalNanchangChina
| | - Ying Yao
- Department of Operating Room, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiefang Song
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Juan Gu
- Department of Operating Room, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhimin Wang
- Department of Emergency, Ruijin Hospital Luwan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ran Liu
- The Medical School of Zhengzhou UniversityZhengzhou CityPeople's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
32
|
Lin WH, Feathers RW, Cooper LM, Lewis-Tuffin LJ, Chen J, Sarkaria JN, Anastasiadis PZ. A Syx-RhoA-Dia1 signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in glioblastoma. JCI Insight 2023; 8:e157491. [PMID: 37427593 PMCID: PMC10371349 DOI: 10.1172/jci.insight.157491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastomas (GBM) are aggressive tumors that lack effective treatments. Here, we show that the Rho family guanine nucleotide exchange factor Syx promotes GBM cell growth both in vitro and in orthotopic xenografts derived from patients with GBM. Growth defects upon Syx depletion are attributed to prolonged mitosis, increased DNA damage, G2/M cell cycle arrest, and cell apoptosis, mediated by altered mRNA and protein expression of various cell cycle regulators. These effects are phenocopied by depletion of the Rho downstream effector Dia1 and are due, at least in part, to increased phosphorylation, cytoplasmic retention, and reduced activity of the YAP/TAZ transcriptional coactivators. Furthermore, targeting Syx signaling cooperates with radiation treatment and temozolomide (TMZ) to decrease viability in GBM cells, irrespective of their inherent response to TMZ. The data indicate that a Syx-RhoA-Dia1-YAP/TAZ signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in GBM and argue for its targeting for cancer treatment.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryan W. Feathers
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lisa M. Cooper
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
33
|
Eckerdt F, Platanias LC. Emerging Role of Glioma Stem Cells in Mechanisms of Therapy Resistance. Cancers (Basel) 2023; 15:3458. [PMID: 37444568 PMCID: PMC10340782 DOI: 10.3390/cancers15133458] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since their discovery at the beginning of this millennium, glioma stem cells (GSCs) have sparked extensive research and an energetic scientific debate about their contribution to glioblastoma (GBM) initiation, progression, relapse, and resistance. Different molecular subtypes of GBM coexist within the same tumor, and they display differential sensitivity to chemotherapy. GSCs contribute to tumor heterogeneity and recapitulate pathway alterations described for the three GBM subtypes found in patients. GSCs show a high degree of plasticity, allowing for interconversion between different molecular GBM subtypes, with distinct proliferative potential, and different degrees of self-renewal and differentiation. This high degree of plasticity permits adaptation to the environmental changes introduced by chemo- and radiation therapy. Evidence from mouse models indicates that GSCs repopulate brain tumors after therapeutic intervention, and due to GSC plasticity, they reconstitute heterogeneity in recurrent tumors. GSCs are also inherently resilient to standard-of-care therapy, and mechanisms of resistance include enhanced DNA damage repair, MGMT promoter demethylation, autophagy, impaired induction of apoptosis, metabolic adaptation, chemoresistance, and immune evasion. The remarkable oncogenic properties of GSCs have inspired considerable interest in better understanding GSC biology and functions, as they might represent attractive targets to advance the currently limited therapeutic options for GBM patients. This has raised expectations for the development of novel targeted therapeutic approaches, including targeting GSC plasticity, chimeric antigen receptor T (CAR T) cells, and oncolytic viruses. In this review, we focus on the role of GSCs as drivers of GBM and therapy resistance, and we discuss how insights into GSC biology and plasticity might advance GSC-directed curative approaches.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Medicine Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
34
|
Zhang H, Tu L, Ma Z, Lin Y, Tan Q. Inhibition of TAZ impairs the migration ability of melanoma cells. Open Life Sci 2023; 18:20220633. [PMID: 37360787 PMCID: PMC10290279 DOI: 10.1515/biol-2022-0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Malignant melanoma (MM) is characterized by rapid growth, frequent metastasis, and high mortality. Targeted therapy for MM is still a research hotspot due to the increasing understanding of the hippo pathway. The aim of this study is to investigate the role of transcriptional coactivator with PDZ-binding motif (TAZ) in MM tumorigenesis. Based on the database analysis, we found that the median mRNA expression of TAZ (5.4) was found to be similar to that of YAP (5.5) in 473 human melanoma specimens. However, in 63 MM cell lines, the median expression of TAZ (10.8) was expressed at a higher level than that of YAP (9.5), which was then validated in A375. TAZ down-regulation by siRNA decreased the migration (72%) and invasion (74%) abilities of A375. Furthermore, the down-regulation of TAZ inhibited the proliferation of A375 without affecting apoptosis. We subsequently blocked hippo signaling with verteporfin and found that verteporfin application decreased the number of migrating (63%) and invading (69%) cells, respectively. We further found that Cyr61 declined following TAZ down-regulation. Moreover, TAZ negatively correlates with melanoma patient's overall survival. Our data proved that TAZ contributed to MM metastasis, which might be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing210008, China
| | - Leijing Tu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhouji Ma
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing210008, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing210008, China
| |
Collapse
|
35
|
Pontes B, Mendes FA. Mechanical Properties of Glioblastoma: Perspectives for YAP/TAZ Signaling Pathway and Beyond. Diseases 2023; 11:86. [PMID: 37366874 DOI: 10.3390/diseases11020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor with a poor prognosis. Recent studies have suggested that mechanobiology, the study of how physical forces influence cellular behavior, plays an important role in glioblastoma progression. Several signaling pathways, molecules, and effectors, such as focal adhesions, stretch-activated ion channels, or membrane tension variations, have been studied in this regard. Also investigated are YAP/TAZ, downstream effectors of the Hippo pathway, which is a key regulator of cell proliferation and differentiation. In glioblastoma, YAP/TAZ have been shown to promote tumor growth and invasion by regulating genes involved in cell adhesion, migration, and extracellular matrix remodeling. YAP/TAZ can be activated by mechanical cues such as cell stiffness, matrix rigidity, and cell shape changes, which are all altered in the tumor microenvironment. Furthermore, YAP/TAZ have been shown to crosstalk with other signaling pathways, such as AKT, mTOR, and WNT, which are dysregulated in glioblastoma. Thus, understanding the role of mechanobiology and YAP/TAZ in glioblastoma progression could provide new insights into the development of novel therapeutic strategies. Targeting YAP/TAZ and mechanotransduction pathways in glioblastoma may offer a promising approach to treating this deadly disease.
Collapse
Affiliation(s)
- Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Fabio A Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
36
|
Fan W, Jurado‐Arjona J, Alanis‐Lobato G, Péron S, Berger C, Andrade‐Navarro MA, Falk S, Berninger B. The transcriptional co-activator Yap1 promotes adult hippocampal neural stem cell activation. EMBO J 2023; 42:e110384. [PMID: 37083045 PMCID: PMC10233373 DOI: 10.15252/embj.2021110384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Most adult hippocampal neural stem cells (NSCs) remain quiescent, with only a minor portion undergoing active proliferation and neurogenesis. The molecular mechanisms that trigger the transition from quiescence to activation are still poorly understood. Here, we found the activity of the transcriptional co-activator Yap1 to be enriched in active NSCs. Genetic deletion of Yap1 led to a significant reduction in the relative proportion of active NSCs, supporting a physiological role of Yap1 in regulating the transition from quiescence to activation. Overexpression of wild-type Yap1 in adult NSCs did not induce NSC activation, suggesting tight upstream control mechanisms, but overexpression of a gain-of-function mutant (Yap1-5SA) elicited cell cycle entry in NSCs and hilar astrocytes. Consistent with a role of Yap1 in NSC activation, single cell RNA sequencing revealed a partial induction of an activated NSC gene expression program. Furthermore, Yap1-5SA expression also induced expression of Taz and other key components of the Yap/Taz regulon that were previously identified in glioblastoma stem cell-like cells. Consequently, dysregulated Yap1 activity led to repression of hippocampal neurogenesis, aberrant cell differentiation, and partial acquisition of a glioblastoma stem cell-like signature.
Collapse
Affiliation(s)
- Wenqiang Fan
- Institute of Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Neuroscience Therapeutic Area, New MedicinesUCB Biopharma SPRLBraine‐l'AlleudBelgium
| | - Jerónimo Jurado‐Arjona
- Institute of Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Gregorio Alanis‐Lobato
- Faculty of BiologyJohannes Gutenberg University MainzMainzGermany
- Present address:
Global Computational Biology and Data SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Sophie Péron
- Institute of Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Christian Berger
- Institute of GeneticsJohannes Gutenberg University MainzMainzGermany
| | | | - Sven Falk
- Institute of BiochemistryFriedrich‐Alexander‐Universität Nürnberg‐ErlangenErlangenGermany
| | - Benedikt Berninger
- Institute of Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- The Francis Crick InstituteLondonUK
- Focus Program Translational NeuroscienceJohannes Gutenberg University MainzMainzGermany
| |
Collapse
|
37
|
Verma R, Chen X, Xin D, Luo Z, Ogurek S, Xin M, Rao R, Berry K, Lu QR. Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss-Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities. Cancer Res 2023; 83:890-905. [PMID: 36634201 DOI: 10.1158/0008-5472.can-22-1577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Malignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter-driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss-induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations. SIGNIFICANCE Multiple progenitor-state mutagenesis reveal that Olig1/2-expressing intermediate precursors are highly susceptible to PTEN/p53-loss-mediated transformation and impart differential drug sensitivity, indicating tumor-initiating cell states and genetic drivers dictate glioma phenotypes and drug responses. See related commentary by Zamler and Hu, p. 807.
Collapse
Affiliation(s)
- Ravinder Verma
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiameng Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
38
|
Ho WS, Mondal I, Xu B, Das O, Sun R, Chiou P, Cai X, Tahmasebinia F, McFadden E, Wu CYJ, Wu Z, Matsui W, Lim M, Meng Z, Lu RO. PP2Ac/STRN4 negatively regulates STING-type I IFN signaling in tumor-associated macrophages. J Clin Invest 2023; 133:e162139. [PMID: 36757811 PMCID: PMC10014107 DOI: 10.1172/jci162139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Stimulator of IFN genes type I (STING-Type I) IFN signaling in myeloid cells plays a critical role in effective antitumor immune responses, but STING agonists as monotherapy have shown limited efficacy in clinical trials. The mechanisms that downregulate STING signaling are not fully understood. Here, we report that protein phosphatase 2A (PP2A), with its specific B regulatory subunit Striatin 4 (STRN4), negatively regulated STING-Type I IFN in macrophages. Mice with macrophage PP2A deficiency exhibited reduced tumor progression. The tumor microenvironment showed decreased immunosuppressive and increased IFN-activated macrophages and CD8+ T cells. Mechanistically, we demonstrated that Hippo kinase MST1/2 was required for STING activation. STING agonists induced dissociation of PP2A from MST1/2 in normal macrophages, but not in tumor conditioned macrophages. Furthermore, our data showed that STRN4 mediated PP2A binding to and dephosphorylation of Hippo kinase MST1/2, resulting in stabilization of YAP/TAZ to antagonize STING activation. In human patients with glioblastoma (GBM), YAP/TAZ was highly expressed in tumor-associated macrophages but not in nontumor macrophages. We also demonstrated that PP2A/STRN4 deficiency in macrophages reduced YAP/TAZ expression and sensitized tumor-conditioned macrophages to STING stimulation. In summary, we demonstrated that PP2A/STRN4-YAP/TAZ has, in our opinion, been an unappreciated mechanism that mediates immunosuppression in tumor-associated macrophages, and targeting the PP2A/STRN4-YAP/TAZ axis can sensitize tumors to immunotherapy.
Collapse
Affiliation(s)
- Winson S. Ho
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Isha Mondal
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Oishika Das
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Raymond Sun
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Pochin Chiou
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Foozhan Tahmasebinia
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| | - Elizabeth McFadden
- Department of Molecular Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Zhihao Wu
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| | - William Matsui
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rongze Olivia Lu
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
- Helen Diller Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
39
|
Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. Nat Commun 2023; 14:441. [PMID: 36707509 PMCID: PMC9883514 DOI: 10.1038/s41467-023-36124-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, yet it remains refractory to systemic therapy. Elimination of senescent cells has emerged as a promising new treatment approach against cancer. Here, we investigated the contribution of senescent cells to GBM progression. Senescent cells are identified in patient and mouse GBMs. Partial removal of p16Ink4a-expressing malignant senescent cells, which make up less than 7 % of the tumor, modifies the tumor ecosystem and improves the survival of GBM-bearing female mice. By combining single cell and bulk RNA sequencing, immunohistochemistry and genetic knockdowns, we identify the NRF2 transcription factor as a determinant of the senescent phenotype. Remarkably, our mouse senescent transcriptional signature and underlying mechanisms of senescence are conserved in patient GBMs, in whom higher senescence scores correlate with shorter survival times. These findings suggest that senolytic drug therapy may be a beneficial adjuvant therapy for patients with GBM.
Collapse
|
40
|
Temporal and spatial stability of the EM/PM molecular subtypes in adult diffuse glioma. Front Med 2023; 17:240-262. [PMID: 36645634 DOI: 10.1007/s11684-022-0936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 01/17/2023]
Abstract
Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities.
Collapse
|
41
|
Piccolo S, Panciera T, Contessotto P, Cordenonsi M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. NATURE CANCER 2023; 4:9-26. [PMID: 36564601 PMCID: PMC7614914 DOI: 10.1038/s43018-022-00473-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Our understanding of the function of the transcriptional regulators YAP and TAZ (YAP/TAZ) in cancer is advancing. In this Review, we provide an update on recent progress in YAP/TAZ biology, their regulation by Hippo signaling and mechanotransduction and highlight open questions. YAP/TAZ signaling is an addiction shared by multiple tumor types and their microenvironments, providing many malignant attributes. As such, it represents an important vulnerability that may offer a broad window of therapeutic efficacy, and here we give an overview of the current treatment strategies and pioneering clinical trials.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
42
|
Cell signaling activation and extracellular matrix remodeling underpin glioma tumor microenvironment heterogeneity and organization. Cell Oncol 2022; 46:589-602. [PMID: 36567397 DOI: 10.1007/s13402-022-00763-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Tumor cells thrive by adapting to the signals in their microenvironment. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. METHODS Multiplex immunohistochemistry, spatial analysis and histological dyes were used to identify and measure immune cell infiltration, cell signal activation and extracellular matrix deposition in low-grade, high-grade astrocytoma and glioblastoma. RESULTS We show that lower grade astrocytoma tissue is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade astrocytoma exhibits abundant immune cell infiltration, activation, and extensive tissue remodeling. Spatial analysis shows that most T-cells are restricted to perivascular regions, but bone marrow-derived macrophages penetrate deep into neoplastic cell-rich regions. The tumor microenvironment is characterized by heterogeneous PI3K, MAPK and CREB signaling, with specific signaling profiles correlating with distinct pathological hallmarks, including angiogenesis, tumor cell density and regions where neoplastic cells border the extracellular matrix. Our results also show that tissue remodeling is important in regulating the architecture of the tumor microenvironment during tumor progression. CONCLUSION The tumor microenvironment in malignant astrocytoma, exhibits changes in cell composition, cell signaling activation and extracellular matrix deposition during disease development and that targeting the extracellular matrix, as well as cell signaling activation will be critical to designing personalized therapy.
Collapse
|
43
|
Wang EJY, Chen IH, Kuo BYT, Yu CC, Lai MT, Lin JT, Lin LYT, Chen CM, Hwang T, Sheu JJC. Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules 2022; 12:biom12121862. [PMID: 36551290 PMCID: PMC9775460 DOI: 10.3390/biom12121862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., β-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.
Collapse
Affiliation(s)
- Evan Ja-Yang Wang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - I-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 403301, Taiwan
| | - Jen-Tai Lin
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
| | - Leo Yen-Ting Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 7102)
| |
Collapse
|
44
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
45
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
46
|
Wu LMN, Zhang F, Rao R, Adam M, Pollard K, Szabo S, Liu X, Belcher KA, Luo Z, Ogurek S, Reilly C, Zhou X, Zhang L, Rubin J, Chang LS, Xin M, Yu J, Suva M, Pratilas CA, Potter S, Lu QR. Single-cell multiomics identifies clinically relevant mesenchymal stem-like cells and key regulators for MPNST malignancy. SCIENCE ADVANCES 2022; 8:eabo5442. [PMID: 36322658 PMCID: PMC9629745 DOI: 10.1126/sciadv.abo5442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST), a highly aggressive Schwann cell (SC)-derived soft tissue sarcoma, arises from benign neurofibroma (NF); however, the identity, heterogeneity and origins of tumor populations remain elusive. Nestin+ cells have been implicated as tumor stem cells in MPNST; unexpectedly, single-cell profiling of human NF and MPNST and their animal models reveal a broad range of nestin-expressing SC lineage cells and dynamic acquisition of discrete cancer states during malignant transformation. We uncover a nestin-negative mesenchymal neural crest-like subpopulation as a previously unknown malignant stem-like state common to murine and human MPNSTs, which correlates with clinical severity. Integrative multiomics profiling further identifies unique regulatory networks and druggable targets against the malignant subpopulations in MPNST. Targeting key epithelial-mesenchymal transition and stemness regulators including ZEB1 and ALDH1A1 impedes MPNST growth. Together, our studies reveal the underlying principles of tumor cell-state evolution and their regulatory circuitries during NF-to-MPNST transformation, highlighting a hitherto unrecognized mesenchymal stem-like subpopulation in MPNST disease progression.
Collapse
Affiliation(s)
- Lai Man Natalie Wu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Feng Zhang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rohit Rao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mike Adam
- Division of Developmental Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kai Pollard
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sara Szabo
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xuezhao Liu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katie A. Belcher
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zaili Luo
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sean Ogurek
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Li Zhang
- Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joshua Rubin
- Department of Neuroscience and Department of Neurology, Division of Hematology and Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Long-sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mario Suva
- Department of Pathology and Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christine A. Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven Potter
- Division of Developmental Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q. Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
47
|
Zhou Y, Fang C, Xu H, Yuan L, Liu Y, Wang X, Zhang A, Shao A, Zhou D. Ferroptosis in glioma treatment: Current situation, prospects and drug applications. Front Oncol 2022; 12:989896. [PMID: 36249003 PMCID: PMC9557197 DOI: 10.3389/fonc.2022.989896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a regulatory form of iron-dependent cell death caused by the accumulation of lipid-based reactive oxygen species (ROS) and differs from apoptosis, pyroptosis, and necrosis. Especially in neoplastic diseases, the susceptibility of tumor cells to ferroptosis affects prognosis and is associated with complex effects. Gliomas are the most common primary intracranial tumors, accounting for disease in 81% of patients with malignant brain tumors. An increasing number of studies have revealed the particular characteristics of iron metabolism in glioma cells. Therefore, agents that target a wide range of molecules involved in ferroptosis may regulate this process and enhance glioma treatment. Here, we review the underlying mechanisms of ferroptosis and summarize the potential therapeutic options for targeting ferroptosis in glioma.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| |
Collapse
|
48
|
Yang J, Xu H, Li C, Li Z, Hu Z. An explorative study for leveraging transcriptomic data of embryonic stem cells in mining cancer stemness genes, regulators, and networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13949-13966. [PMID: 36654075 DOI: 10.3934/mbe.2022650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the exquisite ability of cancer stemness to facilitate tumor initiation, metastasis, and cancer therapy resistance, targeting cancer stemness is expected to have clinical implications for cancer treatment. Genes are fundamental for forming and maintaining stemness. Considering shared genetic programs and pathways between embryonic stem cells and cancer stem cells, we conducted a study analyzing transcriptomic data of embryonic stem cells for mining potential cancer stemness genes. Firstly, we integrated co-expression and regression models and predicted 820 stemness genes. Results of gene enrichment analysis confirmed the good prediction performance for enriched signatures in cancer stem cells. Secondly, we provided an application case using the predicted stemness genes to construct a breast cancer stemness network. Mining on the network identified CD44, SOX2, TWIST1, and DLG4 as potential regulators of breast cancer stemness. Thirdly, using the signature of 31,028 chemical perturbations and their correlation with stemness marker genes, we predicted 67 stemness inhibitors with reasonable accuracy of 78%. Two drugs, namely Rigosertib and Proscillaridin A, were first identified as potential stemness inhibitors for melanoma and colon cancer, respectively. Overall, mining embryonic stem cell data provides a valuable way to identify cancer stemness regulators.
Collapse
Affiliation(s)
- Jihong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China
| | - Hao Xu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong 524001, China
| | - Congshu Li
- BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China
| | - Zhenhao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China
| | - Zhe Hu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong 524001, China
| |
Collapse
|
49
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Torborg SR, Li Z, Chan JE, Tammela T. Cellular and molecular mechanisms of plasticity in cancer. Trends Cancer 2022; 8:735-746. [PMID: 35618573 PMCID: PMC9388572 DOI: 10.1016/j.trecan.2022.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022]
Abstract
Cancer cells are plastic - they can assume a wide range of distinct phenotypes. Plasticity is integral to cancer initiation and progression, as well as to the emergence and maintenance of intratumoral heterogeneity. Furthermore, plastic cells can rapidly adapt to and evade therapy, which poses a challenge for effective cancer treatment. As such, targeting plasticity in cancer holds tremendous promise. Yet, the principles governing plasticity in cancer cells remain poorly understood. Here, we provide an overview of the fundamental molecular and cellular mechanisms that underlie plasticity in cancer and in other biological contexts, including development and regeneration. We propose a key role for high-plasticity cell states (HPCSs) as crucial nodes for cell state transitions and enablers of intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Stefan R Torborg
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|