1
|
Cacciottola L, Camboni A, Dolmans MM. Immune system regulation of physiological and pathological aspects of the ovarian follicle pool throughout the female reproductive lifespan. Hum Reprod 2025; 40:12-22. [PMID: 39607771 DOI: 10.1093/humrep/deae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
The immune system plays a major role in ovarian physiology by regulating the ovarian follicle pool through complex signaling of different growth factors, cytokines, and chemokines. These may promote follicle activation and further growth but could also trigger follicle atresia and clearance of aging or damaged cells within the ovarian cortex. Moreover, extraglandular steroidogenesis potentially occurring in different immune cells like macrophages and natural killer cells might be another way of modulating follicle growth. Ovarian macrophages have recently been found to contain two different populations, namely resident macrophages and monocyte-derived cells, with potentially different roles. The immune system also plays a role in the development of pathological conditions, including premature ovarian insufficiency (POI). Indeed, autoimmune activation against various ovarian antigen targets results in lymphocytic oophoritis mainly targeting early growing follicles, but later leading to complete follicle pool depletion. Immune-mediated ovarian damage may also be caused by viral infection or be the consequence of iatrogenic damage. Certain novel cancer immunotherapies like checkpoint inhibitors have recently been shown to induce ovarian reserve damage in a murine model. Studies are needed to corroborate these findings and further investigate the potential of newly developed immunotherapies to treat POI. Technological advances such as single-cell analyses of less represented cell populations like immune cells inside the ovary are now contributing to valuable new information, which will hopefully lead to the development of new therapeutic strategies for women with fertility issues.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - A Camboni
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Anatomopathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Park SJ, Kim YY, Park W, Park S, Han JY, Kim SW, Kim H, Ku SY. Effects of Cetrorelix on Ovary and Endometrium Prior to Anti-PD-L1 Antibody in Murine Model. Tissue Eng Regen Med 2024; 21:319-328. [PMID: 38103140 PMCID: PMC10825084 DOI: 10.1007/s13770-023-00617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Recent anti-cancer agents, immune checkpoint inhibitors (ICIs), have emerged as effective agents targeting the programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway. While the administration of gonadotropin-releasing hormone (GnRH) analogs before cytotoxic agents is known to preserve female reproductive organ function, the potential effects of ICIs and the protective impact of GnRH analogs on female reproductive organs, especially concerning ovarian reserve and endometrial receptivity, remain unknown. In this study, we attempted to elucidate the protective or regenerative effect on the female reproductive organ of cetrorelix prior to anti-PD-L1 antibody administration. METHOD Using a murine model, we examined the effects of Anti-PD-L1 antibody treatment on ovarian and uterine morphology, compared them with controls, and further assessed any potential protective effect of cetrorelix, a GnRH analog. Histological examinations and quantitative reverse transcription polymerase chain reaction were employed to study the morphological changes and associated gene expression patterns. RESULTS Anti-PD-L1 treatment led to a significant depletion of primordial/primary ovarian follicles and impaired decidualization in uterine stromal cells. However, while pretreatment with cetrorelix could restore normal decidualization patterns in the uterus, it did not significantly ameliorate ovarian follicular reductions. Gene expression analysis reflected these observations, particularly with marked changes in the expression of key genes like Prl and Igfbp1, pivotal in uterine decidualization. CONCLUSION Our study underscores the potential reproductive implications of cetrorelix treatment prior to Anti-PD-L1 therapy, shedding light on its short-term protective effects on the uterus. Further studies are necessary to understand long-term and clinical implications.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, 52725, Republic of Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Ji Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Dai M, Xu Y, Gong G, Zhang Y. Roles of immune microenvironment in the female reproductive maintenance and regulation: novel insights into the crosstalk of immune cells. Front Immunol 2023; 14:1109122. [PMID: 38223507 PMCID: PMC10786641 DOI: 10.3389/fimmu.2023.1109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/25/2023] [Indexed: 01/16/2024] Open
Abstract
Female fertility decline is an accumulative consequence caused by complex factors, among them, the disruption of the immune profile in female reproduction stands out as a crucial contributor. Presently, the effects of immune microenvironment (IME) on the female reproductive process have attracted increasing attentions for their dynamic but precisive roles. Immunocytes including macrophages, dendritic cells, T cells, B cells and neutrophils, with diverse subpopulations as well as high plasticity functioned dynamically in the process of female reproduction through indirect intercellular communication via specific cytokine release transduced by molecular signal networks or direct cell-cell contact to maintain the stability of the reproductive process have been unveiled. The immune profile of female reproduction in each stage has also been meticulously unveiled. Especially, the application of single-cell sequencing (scRNA-seq) technology in this process reveals the distribution map of immune cells, which gives a novel insight for the homeostasis of IME and provides a research direction for better exploring the role of immune cells in female reproduction. Here, we provide an all-encompassing overview of the latest advancements in immune modulation within the context of the female reproductive process. Our approach involves structuring our summary in accordance with the physiological sequence encompassing gonadogenesis, folliculogenesis within the ovaries, ovulation through the fallopian tubes, and the subsequent stages of embryo implantation and development within the uterus. Our overarching objective is to construct a comprehensive portrayal of the immune microenvironment (IME), thereby accentuating the pivotal role played by immune cells in governing the intricate female reproductive journey. Additionally, we emphasize the pressing need for heightened attention directed towards strategies that focus on immune interventions within the female reproductive process, with the ultimate aim of enhancing female fertility.
Collapse
Affiliation(s)
- Mengyuan Dai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Guidong Gong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Epperly R, Giordani VM, Mikkilineni L, Shah NN. Early and Late Toxicities of Chimeric Antigen Receptor T-Cells. Hematol Oncol Clin North Am 2023; 37:1169-1188. [PMID: 37349152 PMCID: PMC10592597 DOI: 10.1016/j.hoc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
As chimeric antigen receptor (CAR) T-cell therapy is increasingly integrated into clinical practice across a range of malignancies, identifying and treating inflammatory toxicities will be vital to success. Early experiences with CD19-targeted CAR T-cell therapy identified cytokine release syndrome and neurotoxicity as key acute toxicities and led to unified initiatives to mitigate the influence of these complications. In this section, we provide an update on the current state of CAR T-cell-related toxicities, with an emphasis on emerging acute toxicities affecting additional organ systems and considerations for delayed toxicities and late effects.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1130, Memphis, TN 38105, USA
| | - Victoria M Giordani
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA; Pediatric Hematology/Oncology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lekha Mikkilineni
- Blood and Marrow Transplantation & Cellular Therapy, Stanford University, Palo Alto, CA, USA; Stanford School of Medicine, 300 Pasteur Drive, Room H0101, Stanford, CA 94305, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA.
| |
Collapse
|