1
|
Zhang Z, Gao Y, Qian Y, Wei B, Jiang K, Sun Z, Zhang F, Yang M, Baldi S, Yu X, Zuo Y, Ren S. The Lyn/RUVBL1 Complex Promotes Colorectal Cancer Liver Metastasis by Regulating Arachidonic Acid Metabolism Through Chromatin Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406562. [PMID: 39665272 DOI: 10.1002/advs.202406562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Liver metastasis is a common cause of death in colorectal cancer (CRC) patients, but epigenetic remodeling and metabolic reprogramming for CRC liver metastasis remain unclear. The study revealed that the Lyn/RUVBL1 complex is highly expressed in CRC and is closely correlated with liver metastasis. On the one hand, ATAC-seq and HiCut suggested that Lyn/RUVBL1 regulates the expression of TRIB3 through the POL II-mediated chromatin conformation of TRIB3 and thus the expression of β-catenin. This promotes the proliferation and migration of CRC through β-catenin-mediated upregulation of MMP9 and VEGF. On the other hand, metabolomics revealed that Lyn/RUVBL1 regulates the expression of PGE2 through the enzyme COX2, thereby promoting arachidonic acid (AA) metabolism. CUT-Tag showed that Lyn/RUVBL1 silencing reduces the H3K27ac level in the COX2 promoter. Then, it is found that COX2 is regulated by the transcription factor FOXA1. Lyn/RUVBL1 modulates AA metabolism by regulating the chromatin accessibility of FOXA1. AA metabolism promotes the metastasis of CRC by affecting β-catenin nuclear translocation and upregulating MMP9 and VEGF. These findings suggest that the Lyn/RUVBL1 complex mediates epigenetic remodeling to regulate the metabolic reprogramming of AA, highlighting its role in promoting the metastasis of CRC.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yina Gao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yuanyuan Qian
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Bowen Wei
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Kexin Jiang
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Zhiwei Sun
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Feifan Zhang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Mingming Yang
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Salem Baldi
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaoqi Yu
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Shuangyi Ren
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
2
|
Wu SH, Xiao MC, Liu F, Hong HY, Ding CH, Zhang X, Xie WF. Cell-permeated peptide P-T3H2 inhibits malignancy on hepatocellular carcinoma through stabilizing HNF4α protein. Discov Oncol 2024; 15:752. [PMID: 39638897 PMCID: PMC11621286 DOI: 10.1007/s12672-024-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES Hepatocyte nuclear factor 4α (HNF4α) is a key regulator of hepatocyte function and has a strong therapeutic effect on hepatocellular carcinoma (HCC) by inducing the differentiation of hepatoma cell into hepatocytes. Our previous study showed that Tribbles homolog 3 (TRIB3) directly interacts with and promotes the degradation of HNF4α in non-alcoholic fatty liver disease (NAFLD). Disrupting the TRIB3-HNF4α interaction by a cell-permeating peptide, called P-T3H2, stabilized HNF4α protein. This study aimed to assess the anti-tumor impact of P-T3H2 in HCC. METHODS The expression of TRIB3 and HNF4α was evaluated using western blot and immunohistochemistry (IHC). Hepatic functions and cellular senescence of HCC cells were evaluated through periodic acid-Schiff (PAS) staining, acetylated low-density lipoprotein (ac-LDL) uptake and senescence-associated β-galactosidase (SA-β-gal) activity staining, respectively. RNA-Seq analysis was performed to identify differentially expressed genes in Huh7 cells treated with P-T3H2. The impact of P-T3H2 on HCC malignancy was assessed in vitro and in vivo. RESULTS TRIB3 exhibited a negative correlation with HNF4α in both human and mouse HCC tissues. The administration of P-T3H2 significantly inhibited the malignancy of HCC cells. Additionally, P-T3H2 stabilized HNF4α protein and facilitated the restoration of hepatic functions and the cellular senescence in HCC cells. RNA-Seq analysis demonstrated that P-T3H2 enhanced the transcriptional activity of HNF4α in HCC. Furthermore, P-T3H2 effectively suppressed the carcinogenesis and progression of HCC in mice. CONCLUSION P-T3H2 suppressed HCC progression through the stabilization of HNF4α protein and may be a promising therapeutic candidate for clinical application in the treatment of HCC.
Collapse
Affiliation(s)
- Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan-Yu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Zhang Y, Duan W, Chen L, Chen J, Xu W, Fan Q, Li S, Liu Y, Wang S, He Q, Li X, Huang Y, Peng H, Zhao J, Zhang Q, Qiu Z, Shao Z, Zhang B, Wang Y, Tian Y, Shu Y, Qin Z, Chi Y. Potassium ion channel modulation at cancer-neural interface enhances neuronal excitability in epileptogenic glioblastoma multiforme. Neuron 2024:S0896-6273(24)00737-2. [PMID: 39532103 DOI: 10.1016/j.neuron.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) is increasingly recognized as a critical modulator in the oncogenesis of glioblastoma multiforme (GBM), with interactions between cancer and local neuronal circuits frequently leading to epilepsy; however, the relative contributions of these factors remain unclear. Here, we report a coordinated intratumor shift among distinct cancer subtypes within progenitor-like families of epileptic GBM patients, revealing an accumulation of oligodendrocyte progenitor (OPC)-like subpopulations at the cancer-neuron interface along with heightened electrical signaling activity in the surrounding neuronal networks. The OPC-like cells associated with epilepsy express KCND2, which encodes the voltage-gated K+ channel KV4.2, enhancing neuronal excitability via accumulation of extracellular K+, as demonstrated in patient-derived ex vivo slices, xenografting models, and engineering organoids. Together, we uncovered the essential local circuitry, cellular components, and molecular mechanisms facilitating cancer-neuron interaction at peritumor borders. KCND2 plays a crucial role in mediating nervous system-cancer electrical communication, suggesting potential targets for intervention.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Wei Duan
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Junrui Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Qi Fan
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Shuwei Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yuandong Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shidi Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Quansheng He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Xiaohui Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yang Huang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Qiangqiang Zhang
- Advanced Model Animal Research Center, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute, Tsinghua University, Zhejiang 314006, China; Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute, Tsinghua University, Zhejiang 314006, China
| | - Zhixin Qiu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhicheng Shao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Novel Bioinformatics Co., Ltd., Shanghai, China
| | - Yihua Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Yousheng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Niu X, Zhang Y, Wang Y. Co-culture models for investigating cellular crosstalk in the glioma microenvironment. CANCER PATHOGENESIS AND THERAPY 2024; 2:219-230. [PMID: 39371093 PMCID: PMC11447344 DOI: 10.1016/j.cpt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Glioma is the most prevalent primary malignant tumor in the central nervous system (CNS). It represents a diverse group of brain malignancies characterized by the presence of various cancer cell types as well as an array of noncancerous cells, which together form the intricate glioma tumor microenvironment (TME). Understanding the interactions between glioma cells/glioma stem cells (GSCs) and these noncancerous cells is crucial for exploring the pathogenesis and development of glioma. To invesigate these interactions requires in vitro co-culture models that closely mirror the actual TME in vivo. In this review, we summarize the two- and three-dimensional in vitro co-culture model systems for glioma-TME interactions currently available. Furthermore, we explore common glioma-TME cell interactions based on these models, including interactions of glioma cells/GSCs with endothelial cells/pericytes, microglia/macrophages, T cells, astrocytes, neurons, or other multi-cellular interactions. Together, this review provides an update on the glioma-TME interactions, offering insights into glioma pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Bahcheli AT, Min HK, Bayati M, Zhao H, Fortuna A, Dong W, Dzneladze I, Chan J, Chen X, Guevara-Hoyer K, Dirks PB, Huang X, Reimand J. Pan-cancer ion transport signature reveals functional regulators of glioblastoma aggression. EMBO J 2024; 43:196-224. [PMID: 38177502 PMCID: PMC10897389 DOI: 10.1038/s44318-023-00016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.
Collapse
Affiliation(s)
- Alexander T Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyun-Kee Min
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masroor Bayati
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hongyu Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Alexander Fortuna
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Weifan Dong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irakli Dzneladze
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jade Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kissy Guevara-Hoyer
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, Department of Clinical Immunology, Institute of Laboratory Medicine (IML) and Biomedical Research Foundation (IdiSCC), San Carlos Clinical Hospital, Madrid, Spain
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Robbins SM, Senger DL. Targeting network circuitry in glioma. NATURE CANCER 2023; 4:1406-1407. [PMID: 37880415 DOI: 10.1038/s43018-023-00640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Affiliation(s)
- Stephen M Robbins
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Donna L Senger
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
The never-abating excitement for targeted therapies. NATURE CANCER 2023; 4:1397-1398. [PMID: 37880413 DOI: 10.1038/s43018-023-00664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
|