1
|
Gorelov R, Hochedlinger K. A cellular identity crisis? Plasticity changes during aging and rejuvenation. Genes Dev 2024; 38:823-842. [PMID: 39293862 PMCID: PMC11535162 DOI: 10.1101/gad.351728.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2024:10.1038/s41581-024-00894-2. [PMID: 39406927 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Chan ASL, Zhu H, Narita M, Cassidy LD, Young ARJ, Bermejo-Rodriguez C, Janowska AT, Chen HC, Gough S, Oshimori N, Zender L, Aitken SJ, Hoare M, Narita M. Titration of RAS alters senescent state and influences tumour initiation. Nature 2024; 633:678-685. [PMID: 39112713 PMCID: PMC11410659 DOI: 10.1038/s41586-024-07797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
Oncogenic RAS-induced senescence (OIS) is an autonomous tumour suppressor mechanism associated with premalignancy1,2. Achieving this phenotype typically requires a high level of oncogenic stress, yet the phenotype provoked by lower oncogenic dosage remains unclear. Here we develop oncogenic RAS dose-escalation models in vitro and in vivo, revealing a RAS dose-driven non-linear continuum of downstream phenotypes. In a hepatocyte OIS model in vivo, ectopic expression of NRAS(G12V) does not induce tumours, in part owing to OIS-driven immune clearance3. Single-cell RNA sequencing analyses reveal distinct hepatocyte clusters with typical OIS or progenitor-like features, corresponding to high and intermediate levels of NRAS(G12V), respectively. When titred down, NRAS(G12V)-expressing hepatocytes become immune resistant and develop tumours. Time-series monitoring at single-cell resolution identifies two distinct tumour types: early-onset aggressive undifferentiated and late-onset differentiated hepatocellular carcinoma. The molecular signature of each mouse tumour type is associated with different progenitor features and enriched in distinct human hepatocellular carcinoma subclasses. Our results define the oncogenic dosage-driven OIS spectrum, reconciling the senescence and tumour initiation phenotypes in early tumorigenesis.
Collapse
Affiliation(s)
- Adelyne S L Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Haoran Zhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masako Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Liam D Cassidy
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Andrew R J Young
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Aleksandra T Janowska
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Hung-Chang Chen
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Sarah Gough
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Naoki Oshimori
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- iFIT Cluster of Excellence EXC 2180 Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery and Development (TüCAD2), Tübingen, Germany
| | - Sarah J Aitken
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew Hoare
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
4
|
Olan I, Ando-Kuri M, Parry AJ, Handa T, Schoenfelder S, Fraser P, Ohkawa Y, Kimura H, Narita M, Narita M. HMGA1 orchestrates chromatin compartmentalization and sequesters genes into 3D networks coordinating senescence heterogeneity. Nat Commun 2024; 15:6891. [PMID: 39134516 PMCID: PMC11319441 DOI: 10.1038/s41467-024-51153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
HMGA1 is an abundant non-histone chromatin protein that has been implicated in embryonic development, cancer, and cellular senescence, but its specific role remains elusive. Here, we combine functional genomics approaches with graph theory to investigate how HMGA1 genomic deposition controls high-order chromatin networks in an oncogene-induced senescence model. While the direct role of HMGA1 in gene activation has been described previously, we find little evidence to support this. Instead, we show that the heterogeneous linear distribution of HMGA1 drives a specific 3D chromatin organization. HMGA1-dense loci form highly interactive networks, similar to, but independent of, constitutive heterochromatic loci. This, coupled with the exclusion of HMGA1-poor chromatin regions, leads to coordinated gene regulation through the repositioning of genes. In the absence of HMGA1, the whole process is largely reversed, but many regulatory interactions also emerge, amplifying the inflammatory senescence-associated secretory phenotype. Such HMGA1-mediated fine-tuning of gene expression contributes to the heterogeneous nature of senescence at the single-cell level. A similar 'buffer' effect of HMGA1 on inflammatory signalling is also detected in lung cancer cells. Our study reveals a mechanism through which HMGA1 modulates chromatin compartmentalization and gene regulation in senescence and beyond.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masami Ando-Kuri
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Oncode In stitute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aled J Parry
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Altos Labs Cambridge Institute, Portway Building, Granta Park, Cambridge, UK
| | - Tetsuya Handa
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Masako Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
5
|
Huna A, Massemin A, Makulyte G, Flaman JM, Martin N, Bernard D. Regulation of cell function and identity by cellular senescence. J Cell Biol 2024; 223:e202401112. [PMID: 38865089 PMCID: PMC11169915 DOI: 10.1083/jcb.202401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
During aging and in some contexts, like embryonic development, wound healing, and diseases such as cancer, senescent cells accumulate and play a key role in different pathophysiological functions. A long-held belief was that cellular senescence decreased normal cell functions, given the loss of proliferation of senescent cells. This view radically changed following the discovery of the senescence-associated secretory phenotype (SASP), factors released by senescent cells into their microenvironment. There is now accumulating evidence that cellular senescence also promotes gain-of-function effects by establishing, reinforcing, or changing cell identity, which can have a beneficial or deleterious impact on pathophysiology. These effects may involve both proliferation arrest and autocrine SASP production, although they largely remain to be defined. Here, we provide a historical overview of the first studies on senescence and an insight into emerging trends regarding the effects of senescence on cell identity.
Collapse
Affiliation(s)
- Anda Huna
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Amélie Massemin
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Gabriela Makulyte
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Jean-Michel Flaman
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Nadine Martin
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Bernard
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
6
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
7
|
Narita M, Olan I, Narita M. Determining the Compaction State of Genes Using DNA FISH. Methods Mol Biol 2024; 2784:215-225. [PMID: 38502489 DOI: 10.1007/978-1-0716-3766-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
DNA fluorescence in situ hybridization (FISH) enables the visualization of chromatin architecture and the interactions between genomic loci at a single-cell level, complementary to genome-wide methods such as Hi-C. DNA FISH uses fluorescent-labeled DNA probes targeted to the loci of interest, allowing for the analysis of their spatial positioning and proximity with microscopy. Here, we describe an optimized experimental procedure for DNA FISH, from probe design and sample preparation through imaging and image quantification. This protocol can be readily applied to querying the spatial positioning of genomic loci of interest.
Collapse
Affiliation(s)
- Masako Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Ioana Olan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Wang K, Gong Z, Chen Y, Zhang M, Wang S, Yao S, Liu Z, Huang Z, Fei B. KDM4C-mediated senescence defense is a targetable vulnerability in gastric cancer harboring TP53 mutations. Clin Epigenetics 2023; 15:163. [PMID: 37848946 PMCID: PMC10583429 DOI: 10.1186/s13148-023-01579-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Gastric cancer patients harboring a TP53 mutation exhibit a more aggressive and chemoresistant phenotype. Unfortunately, efforts to identify the vulnerabilities to overcome these aggressive malignancies have made minimal progress in recent years. Therefore, there is an urgent need to explore the novel therapeutic strategies for this subclass. Histone methylation modulators are critical epigenetic targets for cancer therapies that help maintain the malignancies of cancers harboring TP53 mutations and senescence evasion. Triggering senescence is now considered to benefit multiple cancer therapies. Furthermore, senescence-based "one-two punch" therapy was validated in clinical trials. Therefore, we hypothesized that screening epigenetic modulators might help identify a novel vulnerability to trigger senescence in gastric cancer harboring TP53 mutations. RESULTS We developed a novel efficient approach to identify senescence inducers by sequentially treating cells with drug candidates and senolytic agents. Based on this, we demonstrated that QC6352 (a selective KDM4C inhibitor) efficiently triggered cellular senescence in gastric cancer harboring TP53 mutations. More importantly, the "one-two punch' therapy consisting of QC6352 and SSK1 eliminates tumor cells harboring TP53 mutations. This finding highlights a potential therapeutic strategy for the aggressive subgroup of gastric cancer. Besides, the functions of QC6352 were totally unknown. We demonstrated that QC6352 might possess far more powerful anti-tumor capacities compared to the traditional genotoxic drugs, 5-Fu and Oxaliplatin. CONCLUSIONS This initial investigation to identify a senescence inducer revealed that QC6352 triggers senescence in gastric cancer cells harboring TP53 mutations by regulating the SP1/CDK2 axis through suppressing KDM4C. QC6352 and senolytic agent-SSK1 represent a novel 'one-two punch' therapeutic strategy for the more malignant gastric cancer subtypes.
Collapse
Affiliation(s)
- Kaiqing Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yanyan Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meimei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Suzeng Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhihui Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
9
|
Emerson FJ, Lee SS. Chromatin: the old and young of it. Front Mol Biosci 2023; 10:1270285. [PMID: 37877123 PMCID: PMC10591336 DOI: 10.3389/fmolb.2023.1270285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Aging affects nearly all aspects of our cells, from our DNA to our proteins to how our cells handle stress and communicate with each other. Age-related chromatin changes are of particular interest because chromatin can dynamically respond to the cellular and organismal environment, and many modifications at chromatin are reversible. Changes at chromatin occur during aging, and evidence from model organisms suggests that chromatin factors could play a role in modulating the aging process itself, as altering proteins that work at chromatin often affect the lifespan of yeast, worms, flies, and mice. The field of chromatin and aging is rapidly expanding, and high-resolution genomics tools make it possible to survey the chromatin environment or track chromatin factors implicated in longevity with precision that was not previously possible. In this review, we discuss the state of chromatin and aging research. We include examples from yeast, Drosophila, mice, and humans, but we particularly focus on the commonly used aging model, the worm Caenorhabditis elegans, in which there are many examples of chromatin factors that modulate longevity. We include evidence of both age-related changes to chromatin and evidence of specific chromatin factors linked to longevity in core histones, nuclear architecture, chromatin remodeling, and histone modifications.
Collapse
Affiliation(s)
| | - Siu Sylvia Lee
- Lee Lab, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Shaban HA, Gasser SM. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ 2023:10.1038/s41418-023-01197-y. [PMID: 37596440 DOI: 10.1038/s41418-023-01197-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Collapse
Affiliation(s)
- Haitham A Shaban
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1005, Lausanne, Switzerland.
- Agora Cancer Research Center Lausanne, Rue du Bugnon 25A, 1005, Lausanne, Switzerland.
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, 33 El-Behouth St., Dokki, Giza, 12311, Egypt.
| | - Susan M Gasser
- Fondation ISREC, Rue du Bugnon 25A, 1005, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Olan I, Handa T, Narita M. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence. Curr Opin Cell Biol 2023; 83:102206. [PMID: 37451177 DOI: 10.1016/j.ceb.2023.102206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
Cellular senescence, a persistent form of cell cycle arrest, has been linked to the formation of heterochromatic foci, accompanied by additional concentric epigenetic layers. However, senescence is a highly heterogeneous phenotype, and the formation of these structures is context dependent. Recent developments in the understanding of the high-order chromatin organization have opened new avenues for contextualizing the nuclear and chromatin phenotypes of senescence. Oncogene-induced senescence displays prominent foci and typically exhibits increased chromatin compartmentalization, based on the chromosome conformation assays, as marked by increased transcompaction and segregation of the heterochromatin and euchromatin. However, other types of senescence (e.g., replicative senescence) exhibit comparatively lower levels of compartmentalization. Thus, a more integrative view of the global rearrangement of the chromatin architecture that occurs during senescence is emerging, with potential functional implications for the heterogeneity of the senescence phenotype.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| | - Tetsuya Handa
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
12
|
Sheekey E, Narita M. p53 in senescence - it's a marathon, not a sprint. FEBS J 2023; 290:1212-1220. [PMID: 34921507 DOI: 10.1111/febs.16325] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
The tumour suppressor p53, a stress-responsive transcription factor, plays a central role in cellular senescence. The role of p53 in senescence-associated stable proliferative arrest has been extensively studied. However, increasing evidence indicates that p53 also modulates the ability of senescent cells to produce and secrete diverse bioactive factors (collectively called the senescence-associated secretory phenotype, SASP). Senescence has been linked with both physiological and pathological conditions, the latter including ageing, cancer and other age-related disorders, in part through the SASP. Cellular functions are generally dictated by the expression profile of lineage-specific genes. Indeed, expression of SASP factors and their regulators are often biased by cell type. In addition, emerging evidence suggests that p53 contributes to deregulation of more stringent lineage-specific genes during senescence. P53 itself is also tightly regulated at the protein level. In contrast to the rapid and transient activity of p53 upon stress ('acute-p53'), during senescence and other prolonged pathological conditions, p53 activities are sustained and fine-tuned through a combination of different inputs and outputs ('chronic-p53').
Collapse
Affiliation(s)
- Eleanor Sheekey
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
13
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Abstract
Cellular senescence is implicated in a wide range of physiological and pathological conditions throughout an organism's entire lifetime. In particular, it has become evident that senescence plays a causative role in aging and age-associated disorders. This is not due simply to the loss of function of senescent cells. Instead, the substantial alterations of the cellular activities of senescent cells, especially the array of secretory factors, impact the surrounding tissues or even entire organisms. Such non-cell-autonomous functionality is largely coordinated by tissue-specific genes, constituting a cell fate-determining state. Senescence can be viewed as a gain-of-function phenotype or a process of cell identity shift. Cellular functionality or lineage-specific gene expression is tightly linked to the cell type-specific epigenetic landscape, reinforcing the heterogeneity of senescence across cell types. Here, we aim to define the senescence cellular functionality and epigenetic features that may contribute to the gain-of-function phenotype.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| |
Collapse
|
15
|
Liu Z, Belmonte JCI, Zhang W, Qu J, Liu GH. Deciphering aging at three-dimensional genomic resolution. CELL INSIGHT 2022; 1:100034. [PMID: 37193050 PMCID: PMC10120299 DOI: 10.1016/j.cellin.2022.100034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 05/18/2023]
Abstract
Aging is characterized by progressive functional declines at the organismal, organic, and cellular levels and increased susceptibility to aging-related diseases. Epigenetic alteration is a hallmark of aging, senescent cells show epigenomic changes at multiple scales, such as 3D genome reorganization, alterations of histone modifications and chromatin accessibility, and DNA hypomethylation. Chromosome conformation capture (3C)-based technologies have enabled the generation of key information on genomic reorganizations during senescence. A comprehensive understanding of epigenomic alterations during aging will yield important insights into the underlying epigenetic mechanism for aging regulation, the identification of aging-related biomarkers, and the development of potential aging intervention targets.
Collapse
Affiliation(s)
- Zunpeng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|