1
|
Cho H, Froelicher D, Dokmai N, Nandi A, Sadhuka S, Hong MM, Berger B. Privacy-Enhancing Technologies in Biomedical Data Science. Annu Rev Biomed Data Sci 2024; 7:317-343. [PMID: 39178425 PMCID: PMC11346580 DOI: 10.1146/annurev-biodatasci-120423-120107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The rapidly growing scale and variety of biomedical data repositories raise important privacy concerns. Conventional frameworks for collecting and sharing human subject data offer limited privacy protection, often necessitating the creation of data silos. Privacy-enhancing technologies (PETs) promise to safeguard these data and broaden their usage by providing means to share and analyze sensitive data while protecting privacy. Here, we review prominent PETs and illustrate their role in advancing biomedicine. We describe key use cases of PETs and their latest technical advances and highlight recent applications of PETs in a range of biomedical domains. We conclude by discussing outstanding challenges and social considerations that need to be addressed to facilitate a broader adoption of PETs in biomedical data science.
Collapse
Affiliation(s)
- Hyunghoon Cho
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut, USA;
| | - David Froelicher
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Natnatee Dokmai
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut, USA;
| | - Anupama Nandi
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut, USA;
| | - Shuvom Sadhuka
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Matthew M Hong
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Zhou J, Chen S, Wu Y, Li H, Zhang B, Zhou L, Hu Y, Xiang Z, Li Z, Chen N, Han W, Xu C, Wang D, Gao X. PPML-Omics: A privacy-preserving federated machine learning method protects patients' privacy in omic data. SCIENCE ADVANCES 2024; 10:eadh8601. [PMID: 38295178 PMCID: PMC10830108 DOI: 10.1126/sciadv.adh8601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Modern machine learning models toward various tasks with omic data analysis give rise to threats of privacy leakage of patients involved in those datasets. Here, we proposed a secure and privacy-preserving machine learning method (PPML-Omics) by designing a decentralized differential private federated learning algorithm. We applied PPML-Omics to analyze data from three sequencing technologies and addressed the privacy concern in three major tasks of omic data under three representative deep learning models. We examined privacy breaches in depth through privacy attack experiments and demonstrated that PPML-Omics could protect patients' privacy. In each of these applications, PPML-Omics was able to outperform methods of comparison under the same level of privacy guarantee, demonstrating the versatility of the method in simultaneously balancing the privacy-preserving capability and utility in omic data analysis. Furthermore, we gave the theoretical proof of the privacy-preserving capability of PPML-Omics, suggesting the first mathematically guaranteed method with robust and generalizable empirical performance in protecting patients' privacy in omic data.
Collapse
Affiliation(s)
- Juexiao Zhou
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Siyuan Chen
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yulian Wu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Haoyang Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Longxi Zhou
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yan Hu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zihang Xiang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ningning Chen
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wenkai Han
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chencheng Xu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Di Wang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Oliva A, Kaphle A, Reguant R, Sng LMF, Twine NA, Malakar Y, Wickramarachchi A, Keller M, Ranbaduge T, Chan EKF, Breen J, Buckberry S, Guennewig B, Haas M, Brown A, Cowley MJ, Thorne N, Jain Y, Bauer DC. Future-proofing genomic data and consent management: a comprehensive review of technology innovations. Gigascience 2024; 13:giae021. [PMID: 38837943 PMCID: PMC11152178 DOI: 10.1093/gigascience/giae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024] Open
Abstract
Genomic information is increasingly used to inform medical treatments and manage future disease risks. However, any personal and societal gains must be carefully balanced against the risk to individuals contributing their genomic data. Expanding our understanding of actionable genomic insights requires researchers to access large global datasets to capture the complexity of genomic contribution to diseases. Similarly, clinicians need efficient access to a patient's genome as well as population-representative historical records for evidence-based decisions. Both researchers and clinicians hence rely on participants to consent to the use of their genomic data, which in turn requires trust in the professional and ethical handling of this information. Here, we review existing and emerging solutions for secure and effective genomic information management, including storage, encryption, consent, and authorization that are needed to build participant trust. We discuss recent innovations in cloud computing, quantum-computing-proof encryption, and self-sovereign identity. These innovations can augment key developments from within the genomics community, notably GA4GH Passports and the Crypt4GH file container standard. We also explore how decentralized storage as well as the digital consenting process can offer culturally acceptable processes to encourage data contributions from ethnic minorities. We conclude that the individual and their right for self-determination needs to be put at the center of any genomics framework, because only on an individual level can the received benefits be accurately balanced against the risk of exposing private information.
Collapse
Affiliation(s)
- Adrien Oliva
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Level 3/160 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Anubhav Kaphle
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Level 3/160 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Roc Reguant
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Level 3/160 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Letitia M F Sng
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Level 3/160 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Natalie A Twine
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Level 3/160 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Yuwan Malakar
- Responsible Innovation Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Brisbane, 41 Boggo Rd, Dutton Park QLD 4102, Australia
| | - Anuradha Wickramarachchi
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Level 3/160 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Marcel Keller
- Data61, Commonwealth Scientific and Industrial Research Organisation, Level 5/13 Garden St, Eveleigh NSW 2015, Australia
| | - Thilina Ranbaduge
- Data61, Commonwealth Scientific and Industrial Research Organisation, Building 101, Clunies Ross St, Black Mountain, Canberra, ACT 2601, Australia
| | - Eva K F Chan
- NSW Health Pathology, Sydney, 1 Reserve Road, St Leonards NSW 2065, Australia
| | - James Breen
- Telethon Kids Institute, Perth, WA 6009, Australia
- National Centre for Indigenous Genomics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Sam Buckberry
- Telethon Kids Institute, Perth, WA 6009, Australia
- National Centre for Indigenous Genomics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Boris Guennewig
- Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, 94 Mallett St, Camperdown NSW 2050, Australia
| | - Matilda Haas
- Australian Genomics, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
| | - Alex Brown
- Telethon Kids Institute, Perth, WA 6009, Australia
- National Centre for Indigenous Genomics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Mark J Cowley
- Children’s Cancer Institute, Lowy Cancer Research Centre, Level 4, Lowy Cancer Research Centre Corner Botany & High Streets UNSW Kensington Campus UNSW Sydney, Kensington NSW 2052, Australia
- School of Clinical Medicine, UNSW Medicine & Health, Wallace Wurth Building (C27), Cnr High St & Botany St, UNSW Sydney, Kensington NSW 2052, Australia
| | - Natalie Thorne
- University of Melbourne, Melbourne, Parkville VIC 3052, Australia
- Melbourne Genomics Health Alliance, Melbourne 1G, Walter and Eliza Hall Institute/1G Royal Parade, Parkville VIC 3052, Australia
- Walter and Eliza Hall Institute, Melbourne, 1G, Walter and Eliza Hall Institute/1G Royal Parade, Parkville VIC 3052, Australia
| | - Yatish Jain
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Level 3/160 Hawkesbury Rd, Westmead NSW 2145, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Applied BioSciences 205B Culloden Rd Macquarie University, NSW 2109, Australia
| | - Denis C Bauer
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Applied BioSciences 205B Culloden Rd Macquarie University, NSW 2109, Australia
- Department of Biomedical Sciences, MQ Health General Practice - Macquarie University, Suite 305, Level 3/2 Technology Pl, Macquarie Park NSW 2109, Australia
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Gate 13, Kintore Avenue University of Adelaide, Adelaide SA 5000, Australia
| |
Collapse
|
4
|
Abstract
Following the widespread use of deep learning for genomics, deep generative modeling is also becoming a viable methodology for the broad field. Deep generative models (DGMs) can learn the complex structure of genomic data and allow researchers to generate novel genomic instances that retain the real characteristics of the original dataset. Aside from data generation, DGMs can also be used for dimensionality reduction by mapping the data space to a latent space, as well as for prediction tasks via exploitation of this learned mapping or supervised/semi-supervised DGM designs. In this review, we briefly introduce generative modeling and two currently prevailing architectures, we present conceptual applications along with notable examples in functional and evolutionary genomics, and we provide our perspective on potential challenges and future directions.
Collapse
Affiliation(s)
- Burak Yelmen
- Laboratoire Interdisciplinaire des Sciences du Numérique, CNRS UMR 9015, INRIA, Université Paris-Saclay, Orsay, France;
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Flora Jay
- Laboratoire Interdisciplinaire des Sciences du Numérique, CNRS UMR 9015, INRIA, Université Paris-Saclay, Orsay, France;
| |
Collapse
|
5
|
TrustGWAS: A full-process workflow for encrypted GWAS using multi-key homomorphic encryption and pseudorandom number perturbation. Cell Syst 2022; 13:752-767.e6. [PMID: 36041458 DOI: 10.1016/j.cels.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 01/26/2023]
Abstract
The statistical power of genome-wide association studies (GWASs) is affected by the effective sample size. However, the privacy and security concerns associated with individual-level genotype data pose great challenges for cross-institutional cooperation. The full-process cryptographic solutions are in demand but have not been covered, especially the essential principal-component analysis (PCA). Here, we present TrustGWAS, a complete solution for secure, large-scale GWAS, recapitulating gold standard results against PLINK without compromising privacy and supporting basic PLINK steps including quality control, linkage disequilibrium pruning, PCA, chi-square test, Cochran-Armitage trend test, covariate-supported logistic regression and linear regression, and their sequential combinations. TrustGWAS leverages pseudorandom number perturbations for PCA and multiparty scheme of multi-key homomorphic encryption for all other modules. TrustGWAS can evaluate 100,000 individuals with 1 million variants and complete QC-LD-PCA-regression workflow within 50 h. We further successfully discover gene loci associated with fasting blood glucose, consistent with the findings of the ChinaMAP project.
Collapse
|
6
|
Wan Z, Hazel JW, Clayton EW, Vorobeychik Y, Kantarcioglu M, Malin BA. Sociotechnical safeguards for genomic data privacy. Nat Rev Genet 2022; 23:429-445. [PMID: 35246669 PMCID: PMC8896074 DOI: 10.1038/s41576-022-00455-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/21/2022]
Abstract
Recent developments in a variety of sectors, including health care, research and the direct-to-consumer industry, have led to a dramatic increase in the amount of genomic data that are collected, used and shared. This state of affairs raises new and challenging concerns for personal privacy, both legally and technically. This Review appraises existing and emerging threats to genomic data privacy and discusses how well current legal frameworks and technical safeguards mitigate these concerns. It concludes with a discussion of remaining and emerging challenges and illustrates possible solutions that can balance protecting privacy and realizing the benefits that result from the sharing of genetic information.
Collapse
Affiliation(s)
- Zhiyu Wan
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James W Hazel
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Biomedical Ethics and Society, Vanderbilt University, Nashville, TN, USA
| | - Ellen Wright Clayton
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Biomedical Ethics and Society, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Law School, Nashville, TN, USA
| | - Yevgeniy Vorobeychik
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Murat Kantarcioglu
- Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
| | - Bradley A Malin
- Center for Genetic Privacy and Identity in Community Settings, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Wan Z, Vorobeychik Y, Xia W, Liu Y, Wooders M, Guo J, Yin Z, Clayton EW, Kantarcioglu M, Malin BA. Using game theory to thwart multistage privacy intrusions when sharing data. SCIENCE ADVANCES 2021; 7:eabe9986. [PMID: 34890225 PMCID: PMC8664254 DOI: 10.1126/sciadv.abe9986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Person-specific biomedical data are now widely collected, but its sharing raises privacy concerns, specifically about the re-identification of seemingly anonymous records. Formal re-identification risk assessment frameworks can inform decisions about whether and how to share data; current techniques, however, focus on scenarios where the data recipients use only one resource for re-identification purposes. This is a concern because recent attacks show that adversaries can access multiple resources, combining them in a stage-wise manner, to enhance the chance of an attack’s success. In this work, we represent a re-identification game using a two-player Stackelberg game of perfect information, which can be applied to assess risk, and suggest an optimal data sharing strategy based on a privacy-utility tradeoff. We report on experiments with large-scale genomic datasets to show that, using game theoretic models accounting for adversarial capabilities to launch multistage attacks, most data can be effectively shared with low re-identification risk.
Collapse
Affiliation(s)
- Zhiyu Wan
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Yevgeniy Vorobeychik
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weiyi Xia
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Yongtai Liu
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Myrna Wooders
- Department of Economics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jia Guo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Zhijun Yin
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Ellen Wright Clayton
- Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, Nashville, TN 37203, USA
- School of Law, Vanderbilt University, Nashville, TN 37203, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Murat Kantarcioglu
- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
- Institute for Quantitative Social Science, Harvard University, Cambridge, MA 02138, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bradley A. Malin
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
8
|
Dankar FK. Data privacy through participant empowerment. NATURE COMPUTATIONAL SCIENCE 2021; 1:175-176. [PMID: 38183194 DOI: 10.1038/s43588-021-00047-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Affiliation(s)
- Fida K Dankar
- Department of Information Systems and Security, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|