1
|
Petersen JF, Valk LC, Verhoeven MD, Nierychlo MA, Singleton CM, Dueholm MKD, Nielsen PH. Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems. Syst Appl Microbiol 2025; 48:126574. [PMID: 39700725 DOI: 10.1016/j.syapm.2024.126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Wastewater treatment plants rely on complex microbial communities for bioconversion and removal of pollutants, but many process-critical species are still poorly investigated. One of these genera is Rhodoferax, an abundant core genus in wastewater treatment plants across the world. The genus has been associated with many metabolic traits such as iron reduction and oxidation and denitrification. We used 16S rRNA gene amplicon data to uncover the diversity and abundance of Rhodoferax species in Danish and global treatment plants. Publicly available metagenome-assembled genomes were analyzed based on phylogenomics to delineate species and assign taxonomies based on the SeqCode. The phylogenetic analysis of "Rhodoferax" revealed that species previously assigned to Rhodoferax in wastewater treatment plants should be considered as at least eight different genera, with five representing previously undescribed genera. Genome annotation showed potential for several key-bioconversions in wastewater treatment, such as nitrate reduction, carbohydrate degradation, and accumulations of various storage compounds. Iron oxidation and reduction capabilities were not predicted for abundant species. Species-resolved FISH-Raman was performed to gain an overview of the morphology and ecophysiology of selected taxa to clarify their potential role in global wastewater treatment systems. Our study provides a first insight into the functional and ecological characteristics of several novel genera abundant in global wastewater treatment plants, previously assigned to the Rhodoferax genus.
Collapse
Affiliation(s)
- Jette F Petersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Laura C Valk
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Maarten D Verhoeven
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta A Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin M Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Wei ZY, Feng M, Zhang DX, Jiang CY, Deng Y, Wang ZJ, Feng K, Song Y, Zhou N, Wang YL, Liu SJ. Deep insights into the assembly mechanisms, co-occurrence patterns, and functional roles of microbial community in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 263:120029. [PMID: 39299446 DOI: 10.1016/j.envres.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of β diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.
Collapse
Affiliation(s)
- Zi-Yan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ding-Xi Zhang
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Jun Wang
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs & School of Rural Revitalization), Hainan University, Haikou, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yang Song
- PetroChina Planning and Engineering Institute, Beijing, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Zhang Y, Jia X, Yuan P, Li B, Pan W, Liu J, Zhao W. Activated Sludge Combined with Pervious Concrete Micro-Ecosystem for Runoff Rainwater Collection and Pollutant Purification. TOXICS 2024; 12:838. [PMID: 39771053 PMCID: PMC11679453 DOI: 10.3390/toxics12120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
This study investigated the purification of pollutants in runoff rainwater by constructing a micro-ecosystem using waste-activated sludge (WAS) and riverbed sludge (RBS) as inoculums in combination with pervious concrete. The research results showed that the best hydraulic retention time (HRT) was 9 h. The COD and ammonia nitrogen (NH4+-N) removal of the waste-activated sludge ecosystem (WASE) was 62.67% and 71.21%, respectively, while the riverbed sludge ecosystem (RBSE) showed COD and NH4+-N removal percentages of 46.05% and 66.55%, respectively. The analysis of the genetic metabolism of microbial genes showed that the system was microbially enhanced with extensive and diverse populations. At the phylum level, the microorganisms responsible for degrading organic matter were mainly Firmicutes and Actinobacteriota. At the genus level, the Trichococcus genus was dominant in the WASE, while the Dietzia, norank_f__Sporomusaceae and norank_f__norank_o__norank_c__BRH-c20a genera were the central bacterial populations in the RBSE. The proliferation of phylum-level bacteria in the WASE was relatively large, and the genus-level bacteria demonstrated a better removal efficiency for pollutants. The overall removal effect of the WASE was better than that of the RBSE. The application analyses showed that a WASE is capable of effectively accepting and treating all rainfall below rainstorm levels and at near-full rainstorm levels under optimal removal efficiency conditions. This study innovatively used wastewater plant waste-activated sludge combined with pervious concrete to construct a micro-ecosystem to remove runoff rainwater pollutants. The system achieved pollutant removal comparable to that of pervious concrete modified with adsorbent materials. An effective method for the collection and pollutant treatment of urban runoff rainwater is provided.
Collapse
Affiliation(s)
- Yongsheng Zhang
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Xuechen Jia
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Pengfei Yuan
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Bingqi Li
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Wenyan Pan
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Jianfei Liu
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
| | - Weilong Zhao
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (Y.Z.); (X.J.); (P.Y.); (B.L.); (W.P.); (J.L.)
- Henan Province Engineering Laboratory for Eco-Architecture and the Built Environment, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
4
|
Tan Z, Chen W, Guo Z, Xu X, Xie J, Dai J, Lin Y, Sheng B, Preis S, Wei C, Zhu S. Seasonal dynamics of bacterial composition and functions in biological treatment of coking wastewater. Appl Microbiol Biotechnol 2024; 108:490. [PMID: 39422711 PMCID: PMC11489252 DOI: 10.1007/s00253-024-13274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
Seasonal dynamics of bacterial composition and functions were demonstrated for the biological fluidized-bed bioreactors combined in the anoxic/aerobic1/aerobic2 (AOO) coking wastewater (CWW) treatment sequences. The bacterial composition and functions in the CWW activated sludge samples were revealed by 16S rRNA genes amplicon sequencing. Thiobacillus, Cloacibacterium, Alkaliphilus and Pseudomonas were determined as core genera with seasonal changes. Mutable microbial community composition fluctuated in different seasons in same bioreactor. Distributions of predicted KEGG pathways along four seasons consistently demonstrated enrichment in biodegradation of carbon- and nitrogen-containing compounds. The major contaminants were removed from CWW by biochemical pathway of xenobiotics biodegradation and metabolism. This Level 2 pathway mainly owned the Level 3 pathways of benzoate degradation, drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and aminobenzoate degradation. The RDA results showed that dissolved oxygen with seasonal fluctuation was the main parameter shaping the microbial community. The observed dynamics within the microbial community composition, coupled with the maintained stability of CWW treatment efficiencies and a consistent profile of microbial functional pathways, underscore the presence of functional redundancy in the AOO bioreactors. The study underscored stable and effective operational performances of bioreactors in the AOO sequences, contributing the knowledge of microbiological basics to the advancement of CWW biological treatment. KEY POINTS: • Seasonal fluctuations of bacterial composition described for the AOO system. • Seasonal distributions of metabolic functions focused on carbon and nitrogen removal. • Functional redundancy was revealed in the AOO microbial community.
Collapse
Affiliation(s)
- Zhijie Tan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenli Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ziyu Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xingyuan Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuexia Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binbin Sheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Dörrie B, Nogueira R. Lessons learned from a one-year study of Legionella spp. cultivation from activated sludge samples. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122266. [PMID: 39216355 DOI: 10.1016/j.jenvman.2024.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Risk assessment and management of Legionella spp. contamination in activated sludge in wastewater treatment plants is carried out using the culture method. Underestimation of Legionella spp. is frequently reported in the literature, but a comprehensive long-term study of the performance of the method under comparable conditions is still lacking. The aim of this study is to evaluate the recovery rate and limit of detection of the culture method for Legionella spp. from activated sludge samples collected during the different seasons of the year. Activated sludge samples spiked with Legionella pneumophila subsp. pneumophila strain Philadelphia-1 (mean concentration 5.2 ± 0.35 logCFU/mL) were analysed monthly for one year using the culture method. Three different sample pre-treatments were compared, namely filtration, acid treatment and thermal treatment, and the recovery rate and limit of detection were assessed for each. The recovery rate of the culture method for Legionella spp. depended on the type of sample pre-treatment and the season of activated sludge sampling, while the limit of detection depended only on the sample pre-treatment. The best performance of the culture method, defined as the combination of the highest recovery rate and lowest limit of detection, was obtained for the filtered acid pre-treated samples (recovery rate: 89 ± 4 %; limit of detection: 1.3 logCFU/mL in 83 % of the samples). The lowest limit of detection was observed for the filtered thermally pre-treated samples (1.0 logCFU/mL in 93 % of the samples). Simultaneously, both thermally pre-treated samples showed up to a third lower recovery rates than the other pre-treatments in winter, while untreated and acid pre-treated samples showed consistently high recovery rates (>80%, logCFU/mL). The recovery rates of the unfiltered and filtered thermally pre-treated samples showed significant weak to strong positive correlations with the organic and phosphorus load in the influent as well as with the water and atmospheric temperatures, indicating that the recovery rate depends on the seasonal variation of the wastewater composition. This study presents new insights into the detection and quantification of Legionella spp. in activated sludge samples and considers seasonal dependencies in analytical results.
Collapse
Affiliation(s)
- Beatriz Dörrie
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167, Hannover, Germany.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167, Hannover, Germany.
| |
Collapse
|
6
|
Vestergaard SZ, Dottorini G, Peces M, Murguz A, Dueholm MKD, Nierychlo M, Nielsen PH. Microbial core communities in activated sludge plants are strongly affected by immigration and geography. ENVIRONMENTAL MICROBIOME 2024; 19:63. [PMID: 39210447 PMCID: PMC11361056 DOI: 10.1186/s40793-024-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km2). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence. RESULTS We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km2). CONCLUSIONS The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.
Collapse
Affiliation(s)
- Sofie Zacho Vestergaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Giulia Dottorini
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Admir Murguz
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
7
|
Petriglieri F, Kondrotaite Z, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide. mSystems 2023; 8:e0066723. [PMID: 37992299 PMCID: PMC10746286 DOI: 10.1128/msystems.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
IMPORTANCE Chloroflexota are often abundant members of the biomass in wastewater treatment plants (WWTPs) worldwide, typically with a filamentous morphology, forming the backbones of the activated sludge floc. However, their overgrowth can often cause operational issues connected to poor settling or foaming, impairing effluent quality and increasing operational costs. Despite their importance, few Chloroflexota genera have been characterized so far. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide and an in-depth characterization of their morphology, phylogeny, and ecophysiology, obtaining a broad understanding of their ecological role in activated sludge.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Kleikamp HBC, Grouzdev D, Schaasberg P, van Valderen R, van der Zwaan R, Wijgaart RVD, Lin Y, Abbas B, Pronk M, van Loosdrecht MCM, Pabst M. Metaproteomics, metagenomics and 16S rRNA sequencing provide different perspectives on the aerobic granular sludge microbiome. WATER RESEARCH 2023; 246:120700. [PMID: 37866247 DOI: 10.1016/j.watres.2023.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of microbial ecology. However, systematic studies that provide a better understanding of the complementary nature of these 'omics' approaches, particularly for complex environments such as wastewater treatment sludge, are urgently needed. Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demonstrated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the protein biomass. The established metaomics data and the contig classification pipeline are publicly available, which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.
Collapse
Affiliation(s)
- Hugo B C Kleikamp
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - Pim Schaasberg
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van Valderen
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van der Zwaan
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Roel van de Wijgaart
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
9
|
Riisgaard-Jensen M, Dottorini G, Nierychlo M, Nielsen PH. Primary settling changes the microbial community of influent wastewater to wastewater treatment plants. WATER RESEARCH 2023; 244:120495. [PMID: 37651867 DOI: 10.1016/j.watres.2023.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The continuous immigration of bacteria in influent wastewater strongly impacts the microbial community of activated sludge (AS) in wastewater treatment plants (WWTP), both in terms of species composition and their abundance. Therefore, it is of interest to elucidate the route of immigrating bacteria into the biological tanks, including the effect of primary settlers. These are commonly used pretreatment units that can possibly selectively increase or reduce the relative abundance of certain bacteria. Species-level identification of the microbial composition of influent wastewater before and after primary settling was carried out in four full-scale municipal WWTPs biweekly over one year by 16S rRNA gene amplicon sequencing. Overall, 37-49% of incoming COD was removed in the primary settlers. Most genera and species were present in the wastewater to all four plants and the trend of these were investigated across the primary settlers. Approximately 50% of the genera had the same trend across at least three WWTPs. Few genera significantly increased in relative read abundance (3.7%) after settling, while 22.3% showed a significant reduction in relative abundance. We investigated process-critical species in AS, such as known nitrifiers, polyphosphate-accumulating organisms, and filamentous bacteria. Most taxa were affected similarly in all WWTPs including multiple genera involved in bulking in AS. However, some genera, e.g., important polyphosphate-accumulating bacteria, had inconsistent trends across WWTPs, suggesting that the characteristics of the wastewater are important for the trend of some bacteria through primary settling. In all cases, primary settling changed the microbial community of the influent wastewater, posing an obvious candidate for upstream control to optimize the assembly of the microbial communities in activated sludge.
Collapse
Affiliation(s)
- Marie Riisgaard-Jensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Giulia Dottorini
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
10
|
Scarim G, LaMartina EL, Venkiteshwaran K, Zitomer DH, Newton RJ, McNamara PJ. An inexpensive, reproducible method to quantify activated sludge foaming potential: Validation through lab-scale studies and year-long full-scale sampling campaign. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10856. [PMID: 36949613 DOI: 10.1002/wer.10856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/15/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Activated sludge is a conventional treatment process for biochemical oxygen demand (BOD) and total suspended solids (TSS) removal at water resource recovery facilities (WRRFs). Foaming events are a common operational issue in activated sludge and can lead to decreased treatment efficiency, maintenance issues, and potential environmental health risks. Stable foaming events are caused by biological and chemical drivers (i.e., microbes and surfactants) during the aeration process. However, foaming events are difficult to predict and quantify. We present an inexpensive and easy-to-use method that can be applied at WRRFs to quantify foaming potential. Subsequently, the method was applied over a year-long full-scale study while data on microbial community composition and functional parameters associated with foaming potential were collected from activated sludge samples at South Shore Water Reclamation Facility (WRF) (Oak Creek, WI). Results from the development of the foaming potential method using linear alkylbenzene sulfonate (LAS) showed that the method was reproducible (relative standard deviation <20%) and able to capture changes in foam-inducing constituents. Using full-scale activated sludge samples, higher relative abundance values for the following genera were associated with foaming events: Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio. This is the first report that Variovorx and Bdellovibrio relative abundance was correlated with foaming events in activated sludge. Furthermore, the foaming potential positively correlated (ρ = 0.24) with soluble total nitrogen. Characterizing foaming events through frequent sampling and monitoring of specific genera and functional parameters may allow for predictions and preemptive mitigation efforts to avoid negative consequences in the future. PRACTITIONER POINTS: A reproducible method to measure foaming potential in activated sludge is available. Genera Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio correlated with foaming events. A year-long sampling campaign of activated sludge measuring foaming potential and microbial community composition was conducted at South Shore Water Reclamation Facility in Oak Creek, WI. More research at other facilities with this method is needed to understand links between microbes and foaming.
Collapse
Affiliation(s)
- Grace Scarim
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Kaushik Venkiteshwaran
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
- Department of Civil, Coastal & Environmental Engineering, University of South Alabama, Mobile, Alabama, USA
| | - Daniel H Zitomer
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Patrick J McNamara
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Hossein M, Asha R, Bakari R, Islam NF, Jiang G, Sarma H. Exploring eco-friendly approaches for mitigating pharmaceutical and personal care products in aquatic ecosystems: A sustainability assessment. CHEMOSPHERE 2023; 316:137715. [PMID: 36621687 DOI: 10.1016/j.chemosphere.2022.137715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Global water scarcity is exacerbated by climate change, population growth, and water pollution. Over half of the world's population will be affected by water shortages for at least a month annually by 2050 due toa lack of clean water sources. Even though recycling wastewater helps meet the growing demand, new pollutants, including pharmaceuticals and personal care products (PPCPs), pose a health threat since conventional methods cannot remove them and their environmental monitoring regulations are yet in place. Therefore, the current review aims to investigate and propose eco-friendly technologies for removing PPCPs from wastewater and their implementation strategies for ecosystem safety. Findings indicated the absence of a single wastewater treatment technology that can remove all PPCPs in a single operation. Instead, biotechnological methods are one of the alternatives that can remove PPCPs from aquatic environments. In this context, community involvement and knowledge transfer are identified keys to clean water resources' long-term sustainability.
Collapse
Affiliation(s)
- Miraji Hossein
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ripanda Asha
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ramadhani Bakari
- Department of Petroleum and Energy Engineering, The University of Dodoma, Dodoma, 41000, Tanzania
| | - Nazim Forid Islam
- Institutional Biotech Hub (IBT Hub), Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
12
|
Kodera SM, Sharma A, Martino C, Dsouza M, Grippo M, Lutz HL, Knight R, Gilbert JA, Negri C, Allard SM. Microbiome response in an urban river system is dominated by seasonality over wastewater treatment upgrades. ENVIRONMENTAL MICROBIOME 2023; 18:10. [PMID: 36805022 PMCID: PMC9938989 DOI: 10.1186/s40793-023-00470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microorganisms such as coliform-forming bacteria are commonly used to assess freshwater quality for drinking and recreational use. However, such organisms do not exist in isolation; they exist within the context of dynamic, interactive microbial communities which vary through space and time. Elucidating spatiotemporal microbial dynamics is imperative for discriminating robust community changes from ephemeral ecological trends, and for improving our overall understanding of the relationship between microbial communities and ecosystem health. We conducted a seven-year (2013-2019) microbial time-series investigation in the Chicago Area Waterways (CAWS): an urban river system which, in 2016, experienced substantial upgrades to disinfection processes at two wastewater reclamation plants (WRPs) that discharge into the CAWS and improved stormwater capture, to improve river water quality and reduce flooding. Using culture-independent and culture-dependent approaches, we compared CAWS microbial ecology before and after the intervention. RESULTS Examinations of time-resolved beta distances between WRP-adjacent sites showed that community similarity measures were often consistent with the spatial orientation of site locations to one another and to the WRP outfalls. Fecal coliform results suggested that upgrades reduced coliform-associated bacteria in the effluent and the downstream river community. However, examinations of whole community changes through time suggest that the upgrades did little to affect overall riverine community dynamics, which instead were overwhelmingly driven by yearly patterns consistent with seasonality. CONCLUSIONS This study presents a systematic effort to combine 16S rRNA gene amplicon sequencing with traditional culture-based methods to evaluate the influence of treatment innovations and systems upgrades on the microbiome of the Chicago Area Waterway System, representing the longest and most comprehensive characterization of the microbiome of an urban waterway yet attempted. We found that the systems upgrades were successful in improving specific water quality measures immediately downstream of wastewater outflows. Additionally, we found that the implementation of the water quality improvement measures to the river system did not disrupt the overall dynamics of the downstream microbial community, which remained heavily influenced by seasonal trends. Such results emphasize the dynamic nature of microbiomes in open environmental systems such as the CAWS, but also suggest that the seasonal oscillations remain consistent even when perturbed.
Collapse
Affiliation(s)
- Sho M Kodera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | | | - Mark Grippo
- Environmental Science Division, Argonne National Laboratory, University of Chicago, Lemont, IL, USA
| | - Holly L Lutz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jack A Gilbert
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Cristina Negri
- Environmental Science Division, Argonne National Laboratory, University of Chicago, Lemont, IL, USA.
| | - Sarah M Allard
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Dottorini G, Wágner DS, Stokholm-Bjerregaard M, Kucheryavskiy S, Michaelsen TY, Nierychlo M, Peces M, Williams R, Nielsen PH, Andersen KS, Nielsen PH. Full-scale activated sludge transplantation reveals a highly resilient community structure. WATER RESEARCH 2023; 229:119454. [PMID: 36513020 DOI: 10.1016/j.watres.2022.119454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Well-functioning and stable microbial communities are critical for the operation of activated sludge (AS) wastewater treatment plants (WWTPs). Bioaugmentation represents a potentially useful approach to recover deteriorated systems or to support specific AS processes, but its application in full-scale WWTPs is generally problematic. We conducted a massive transplantation (in one day) exchanging AS from a donor to a recipient full-scale WWTP with similar process type (biological removal of nitrogen and phosphorus) and performance, but with differences in microbial community structure. The treatment performance in the recipient plant was not compromised and the effluent quality remained stable. The AS community structure of the recipient plant was initially very similar to the donor AS, but it almost completely restored the pre-transplantation structure approximately 40 days after transplantation, corresponding to 3 times the solid retention time. Most of the unique species of donor AS added to recipient AS disappeared quickly, although some disappeared more slowly the following months, indicating some survival and potentially a time limited function in the recipient plant. Moreover, the addition in higher abundance of most species already present in the recipient AS (e.g., the polyphosphate accumulating organisms) or the reduction of the abundance of unwanted bacteria (e.g., filamentous bacteria) in the recipient plant was not successful. Moreover, we observed similar abundance patterns after transplantation for species belonging to different functional guilds, so we did not observe an increase of the functional redundancy. Investigations of the microbial community structure in influent wastewater revealed that for some species the abundance trends in the recipient plant were closely correlated to their abundance in the influent. We showed that a very resilient microbial community was responsible for the outcome of the transplantation of AS at full-scale WWTP, potentially as a consequence of mass-immigration from influent wastewater. The overall results imply that massive transplantation of AS across different WWTPs is not a promising strategy to permanently solve operational problems. However, by choosing a compatible AS donor, short term mitigation of serious operational problems may be possible.
Collapse
Affiliation(s)
- Giulia Dottorini
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Dorottya Sarolta Wágner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | | - Thomas Yssing Michaelsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rohan Williams
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore
| | | | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
14
|
Rothman JA, Saghir A, Chung SA, Boyajian N, Dinh T, Kim J, Oval J, Sharavanan V, York C, Zimmer-Faust AG, Langlois K, Steele JA, Griffith JF, Whiteson KL. Longitudinal metatranscriptomic sequencing of Southern California wastewater representing 16 million people from August 2020-21 reveals widespread transcription of antibiotic resistance genes. WATER RESEARCH 2023; 229:119421. [PMID: 36455460 DOI: 10.1016/j.watres.2022.119421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs (as measured through PERMANOVA, P < 0.001) and that the relative abundance of many individual AMR genes/variants increased over time (as measured with MaAsLin2, Padj < 0.05). Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds.
Collapse
Affiliation(s)
- Jason A Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America.
| | - Andrew Saghir
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Seung-Ah Chung
- Genomics High-Throughput Facility, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Nicholas Boyajian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Thao Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Jinwoo Kim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Jordan Oval
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Vivek Sharavanan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Courtney York
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Kylie Langlois
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America.
| |
Collapse
|
15
|
He H, Carlson AL, Nielsen PH, Zhou J, Daigger GT. Comparative analysis of floc characteristics and microbial communities in anoxic and aerobic suspended growth processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10822. [PMID: 36544219 PMCID: PMC10107865 DOI: 10.1002/wer.10822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 06/09/2023]
Abstract
A fully anoxic suspended growth process is an appealing alternative to conventional activated sludge (AS) due to considerable aeration reduction and improved carbon processing efficiency for biological nutrient removal (BNR). With development of the hybrid membrane aerated biofilm reactor (MABR) technology, implementation of a fully anoxic suspended growth community in BNR facilities became practical. To better understand potential limitations with the elimination of aeration, we carried out microscopic examination and 16S rRNA gene-based microbial community profiling to determine how an anoxic suspended growth would differ from the conventional aerobic process in floc characteristics, microbial diversity, microbial temporal dynamics, and community assembly pattern. Fewer filamentous populations were found in the anoxic mixed liquor, suggesting easily sheared flocs. The anoxic microbial community had distinct composition and structure, but its diversity and temporal dynamics were similar to the conventional aerobic community. A variety of well-studied functional guilds were also identified in the anoxic community. The anoxic microbial community assembly was more stochastic than the conventional aerobic community, but deterministic assembly was still significant with a large core microbiome adapted to the anoxic condition. PRACTITIONER POINTS: Flocs developed under the anoxic conditions had less filamentous backbones, implying reduced flocculation capacity and easily sheared flocs. Knowledge about the ecophysiology of Thauera, Thiothrix, and Trichococcus can help achieve good properties of the anoxic flocs. A diverse microbial community sustainably adapted to the fully anoxic condition, containing a variety of filaments, denitrifiers, and PAOs. The anoxic microbial community displayed a similar degree of diversity and temporal dynamics compared to the aerobic counterpart. The anoxic community's assembly was more stochastic, so it may be less subject to changes in environmental variables.
Collapse
Affiliation(s)
- Huanqi He
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Avery L. Carlson
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, and School of Computer ScienceUniversity of OklahomaNormanOklahomaUSA
| | - Glen T. Daigger
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
16
|
Wágner DS, Peces M, Nierychlo M, Mielczarek AT, Thornberg D, Nielsen PH. Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs. WATER RESEARCH 2022; 216:118340. [PMID: 35364352 DOI: 10.1016/j.watres.2022.118340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The activated sludge wastewater treatment process has been thoroughly researched in more than 100 years, yet there are still operational challenges that have not been fully resolved. Such a challenge is the control of filamentous bulking caused by the overgrowth of certain filamentous bacteria. In this study, we tested different mitigation strategies to reduce filamentous bulking, caused by two common filamentous genera found in full-scale water resource recovery facilities (WRRF), Candidatus Microthrix and Candidatus Amarolinea. PAX dosing, ozone addition, hydrocyclone implementation, and the addition of nano-coagulants were tested as mitigation strategies in four parallel treatment lines in a full-scale WRRF over three consecutive years. Unexpectedly, the activated sludge settleability was not affected by any of the mitigation strategies. Some of the strategies appeared to have a strong mitigating effect on the two filamentous species. However, detailed analyses of the microbial communities revealed strong recurrent seasonal variations in all four lines, including the control line which masked the real effect. After removing the effect of the seasonal variation by using a time-series decomposition approach, it was clear that the filamentous bacteria were mostly unaffected by the mitigation strategies. Only PAX dosing had some effect on Ca. Microthrix, but only on one species, Ca. Microthrix subdominans, and not on the most common Ca. Microthrix parvicella. Overall, our study shows the importance of long-term monitoring of microbial communities at species level to understand the normal seasonal pattern to effectively plan and execute full-scale experiments. Moreover, the results highlight the importance of using parallel reference treatment lines when evaluating the effect of mitigation strategies in full-scale treatment plants.
Collapse
Affiliation(s)
- Dorottya S Wágner
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark; Biofos, Copenhagen, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | | | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
| |
Collapse
|