1
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Singh A, T V A, Singh S, Saxena AK, Nain L. Application of fungal inoculants enhances colonization of secondary bacterial degraders during in situ paddy straw degradation: a genomic insights into cross-domain synergism. Int Microbiol 2024:10.1007/s10123-024-00570-2. [PMID: 39138687 DOI: 10.1007/s10123-024-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Rice cultivation generates huge amounts of on farm residues especially under mechanical harvesting. Paddy straw being recalcitrant hinders sowing of upcoming rabi crops like wheat and mustard. Non-environmental sustainable practice of on-farm burning of the paddy residues is being popularly followed for quick disposal of the agro-residues and land preparation. However, conservation agriculture involving in situ residue incorporation can be a sustainable option to utilize the residues for improvement of soil biological health. However, low temperature coupled with poor nitrogen status of soil reduces the decomposition rate of residues that may lead to nitrogen immobilization and hindrance in land preparation. In this direction, ecological impact of two approaches viz priming with urea and copiotrophic fungus-based bioformulation (CFB) consisting of Coprinopsis cinerea LA2 and Cyathus stercoreus ITCC3745 was studied for in situ degradation of residues. Succession of bacterial diversity was deciphered through high throughput whole metagenomic sequencing along with studies on dynamics of soil microbial enzymes. Treatments receiving CFB (T1) and urea (T2) when compared with bulk soil (absolute control) showed an increase in richness of the microbial diversity as compared to control straw retained treatment control (T3). The β diversity indices also indicated sufficient group variations among the treatments receiving CFB and urea as compared to only straw retained treatment and bulk soil. Priming of paddy straw with CFB and urea also induced significant rewiring of the bacterial co-occurrence networks. Quantification of soil ligno-cellulolytic activity as well as abundance of carbohydrate active enzymes (CAZy) genes indicated high activities of hydrolytic enzymes in CFB primed straw retention treatment as compared to urea primed straw retention treatment. The genomic insights on effectiveness of copiotrophic fungus bioformulation for in situ degradation of paddy straw will further help in developing strategies for management of crop residues in eco-friendly manner.
Collapse
Affiliation(s)
- Arjun Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
- ICAR-Central Soil Salinity Research Institute, RRS Lucknow, Lucknow, UP, India
| | - Abiraami T V
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Roman-Reyna V, Crandall SG. Seeing in the dark: a metagenomic approach can illuminate the drivers of plant disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1405042. [PMID: 39055364 PMCID: PMC11269093 DOI: 10.3389/fpls.2024.1405042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Veronica Roman-Reyna
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| | - Sharifa G. Crandall
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Bai Y, Zheng X, Ma J, Liu H, Zeng H, Zhang F, Wang J, Song K. Multiple Perspectives of Study on the Potential of Bacillus amyloliquefaciens JB20221020 for Alleviating Nutrient Stress in Lettuce. Curr Microbiol 2024; 81:228. [PMID: 38890167 DOI: 10.1007/s00284-024-03752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Soil nutrient deficiency has become a key factor limiting crop growth. Plant growth-promoting rhizobacteria (PGPR) are vital in resisting abiotic stress. In this study, we investigated the effects of inoculation with Bacillus amyloliquefaciens JB20221020 on the physiology, biochemistry, rhizosphere microorganisms, and metabolism of lettuce under nutrient stress. Pot experiments showed that inoculation with B. amyloliquefaciens JB20221020 significantly promoted lettuce growth under nutrient deficiency. At the same time, the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase and the content of proline increased, and the content of Malondialdehyde decreased in the lettuce inoculated with B. amyloliquefaciens JB20221020. Inoculation with B. amyloliquefaciens JB20221020 altered the microbial community of the rhizosphere and increased the relative abundances of Myxococcales, Deltaproteobacteria, Proteobacteria, Devosia, and Verrucomicrobia. Inoculation also altered the rhizosphere metabolism under nutrient deficiency. The folate metabolism pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. This study explored the interaction between plants and microorganisms under nutrient deficiency, further explained the critical role of rhizosphere microorganisms in the process of plant nutrient stress, and provided a theoretical basis for the use of microorganisms to improve plant resistance.
Collapse
Affiliation(s)
- Yinshuang Bai
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- College of Life Sciences, Yangtze University, Jingzhou, 434025, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Juan Ma
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
| | - Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Fujian Zhang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China.
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China.
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
5
|
Wang R, Li X, Lv F, He J, Lv R, Wei L. Sesame bacterial wilt significantly alters rhizosphere soil bacterial community structure, function, and metabolites in continuous cropping systems. Microbiol Res 2024; 282:127649. [PMID: 38402727 DOI: 10.1016/j.micres.2024.127649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Bacterial wilt is the leading disease of sesame and alters the bacterial community composition, function, and metabolism of sesame rhizosphere soil. However, its pattern of change is unclear. Here, the purpose of this study was to investigate how these communities respond to three differing severities of bacterial wilt in mature continuously cropped sesame plants by metagenomic and metabolomic techniques, namely, absence (WH), moderate (WD5), and severe (WD9) wilt. The results indicated that bacterial wilt could significantly change the bacterial community structure in the rhizosphere soil of continuously cropped sesame plants. The biomarker species with significant differences will also change with increasing disease severity. In particular, the gene expression levels of Ralstonia solanacearum in the WD9 and WD5 treatments increased by 25.29% and 33.61%, respectively, compared to those in the WH treatment (4.35 log10 copies g-1). The occurrence of bacterial wilt significantly altered the functions of the bacterial community in rhizosphere soil. KEEG and CAZy functional annotations revealed that the number of significantly different functions in WH was greater than that in WD5 and WD9. Bacterial wilt significantly affected the relative content of metabolites, especially acids, in the rhizosphere soil, and compared with those in the rhizosphere soil from WH, 10 acids (including S-adenosylmethionine, N-acetylleucine, and desaminotyrosine, etc.) in the rhizosphere soil from WD5 or WD9 significantly increased. In comparison, the changes in the other 10 acids (including hypotaurine, erucic acid, and 6-hydroxynicotinic acid, etc.) were reversed. The occurrence of bacterial wilt also significantly inhibited metabolic pathways such as ABC transporter and amino acid biosynthesis pathways in rhizosphere soil and had a significant impact on two key enzymes (1.1.1.11 and 2.6.1.44). In conclusion, sesame bacterial wilt significantly alters the rhizosphere soil bacterial community structure, function, and metabolites. This study enhances the understanding of sesame bacterial wilt mechanisms and lays the groundwork for future prevention and control strategies against this disease.
Collapse
Affiliation(s)
- Ruiqing Wang
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China.
| | - Xinsheng Li
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi Province 330200, PR China
| | - Fengjuan Lv
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China
| | - Junhai He
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China
| | - Rujie Lv
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China
| | - Lingen Wei
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China.
| |
Collapse
|
6
|
Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens? Int J Mol Sci 2024; 25:1308. [PMID: 38279306 PMCID: PMC10816636 DOI: 10.3390/ijms25021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering.
Collapse
Affiliation(s)
- Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
7
|
Ge L, Sun Y, Li Y, Wang L, Guo G, Song L, Wang C, Wu G, Zang X, Cai X, Li S, Li P. Ecosystem sustainability of rice and aquatic animal co-culture systems and a synthesis of its underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163314. [PMID: 37030380 DOI: 10.1016/j.scitotenv.2023.163314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
Integrated planting and breeding of rice and aquatic animals, including traditional rice-fish co-culture (RF), has been conducted for over 1200 years. It is one of the primary modes of modern ecologically sustainable agriculture. Rice and aquatic animal (RA) co-culture systems reduce risks of environmental pollution, reduce greenhouse gas emissions, maintain soil fertility, stabilize grain incomes, and preserve paddy field biodiversity. Nevertheless, the mechanisms that underlie the ecological sustainability of these systems remain controversial and poorly understood, restricting their practice at a larger scale. Here, the latest advance in understanding the evolution and extension of RA systems is synthesized, in addition to a discussion of the underlying ecological mechanisms of taxonomic interactions, complementary nutrient use, and microbially-driven elemental cycling. Specifically, the aim of this review is to provide a theoretical framework for the design of sustainable agricultural systems by integrating traditional knowledge and modern technologies.
Collapse
Affiliation(s)
- Lei Ge
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yujie Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Luyao Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guanqing Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Lili Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Cui Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guogan Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiaoyun Zang
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China
| | - Xiaomei Cai
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Peng Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China.
| |
Collapse
|