1
|
Wu Y, Jewell S, Xing X, Nan Y, Strong AJ, Yang G, Boutelle MG. Real-Time Non-Invasive Imaging and Detection of Spreading Depolarizations through EEG: An Ultra-Light Explainable Deep Learning Approach. IEEE J Biomed Health Inform 2024; 28:5780-5791. [PMID: 38412076 DOI: 10.1109/jbhi.2024.3370502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile.
Collapse
|
2
|
Cobler-Lichter M, Suchdev K, Tatro H, Cascone A, Yang J, Weinberg J, Abdalkader MK, Dasenbrock HH, Ong CJ, Cervantes-Arslanian A, Greer D, Nguyen TN, Daneshmand A, Chung DY. Safety and Outcomes of Valproic Acid in Subarachnoid Hemorrhage Patients: A Retrospective Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313246. [PMID: 39314927 PMCID: PMC11419238 DOI: 10.1101/2024.09.09.24313246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background and Purpose Animal studies have suggested that valproic acid (VPA) is neuroprotective in aneurysmal subarachnoid hemorrhage (SAH). Potential mechanisms include an effect on cortical spreading depolarizations (CSD), apoptosis, blood-brain barrier integrity, and inflammatory pathways. However, the effect of VPA on SAH outcomes in humans has not been investigated. Methods We conducted a retrospective analysis of 123 patients with nontraumatic SAH. Eighty-seven patients had an aneurysmal source and 36 patients did not have a culprit lesion identified. We used stepwise logistic regression to determine the association between VPA and the following: delayed cerebral ischemia (DCI), radiographic vasospasm, and discharge modified Rankin Scale (mRS) score > 3. Results All 18 patients who received VPA underwent coil embolization of their aneurysm. VPA use did not have a significant association with DCI on adjusted analysis (Odds Ratio, OR = 1.07, 95% CI: 0.20 - 5.80). The association between VPA use and vasospasm was OR = 0.64 (0.19 - 1.98) and discharge mRS > 3 was OR = 0.45 (0.10 - 1.64). Increased age (OR = 1.04, 1.01 - 1.07) and Hunt and Hess (HH) grade > 3 (OR = 14.5, 4.31 - 48.6) were associated with an increased likelihood for poor discharge outcome (mRS > 3). Younger age (OR = 0.96, 0.93 - 0.99), mFS score = 4 (OR = 4.14, 1.81 - 9.45), and HH grade > 3 (OR = 2.92, 1.11 - 7.69) were all associated with subsequent development of radiographic vasospasm. There were no complications associated with VPA administration. Conclusion We did not observe an association between VPA and the rate of DCI. There may have been a protective association on discharge outcome and radiographic vasospasm that did not reach statistical significance. We found that VPA use was safe and is plausible to be used in a population of SAH patients who have undergone endovascular treatment of their aneurysm. Larger, prospective studies are needed to determine the effect of VPA on outcome after SAH.
Collapse
|
3
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
4
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
van Hameren G, Aboghazleh R, Parker E, Dreier JP, Kaufer D, Friedman A. From spreading depolarization to blood-brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy. Nat Rev Neurol 2024; 20:408-425. [PMID: 38886512 DOI: 10.1038/s41582-024-00973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood-brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.
Collapse
Affiliation(s)
- Gerben van Hameren
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Refat Aboghazleh
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ellen Parker
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Cell Biology, Cognitive and Brain Sciences, Zelman Inter-Disciplinary Center of Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
6
|
Liu Z, Xu X, Huang S, Huang X, Liu Z, Yao C, He M, Chen J, Chen HJ, Liu J, Xie X. Multichannel microneedle dry electrode patches for minimally invasive transdermal recording of electrophysiological signals. MICROSYSTEMS & NANOENGINEERING 2024; 10:72. [PMID: 38828404 PMCID: PMC11143369 DOI: 10.1038/s41378-024-00702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024]
Abstract
The collection of multiple-channel electrophysiological signals enables a comprehensive understanding of the spatial distribution and temporal features of electrophysiological activities. This approach can help to distinguish the traits and patterns of different ailments to enhance diagnostic accuracy. Microneedle array electrodes, which can penetrate skin without pain, can lessen the impedance between the electrodes and skin; however, current microneedle methods are limited to single channels and cannot achieve multichannel collection in small areas. Here, a multichannel (32 channels) microneedle dry electrode patch device was developed via a dimensionality reduction fabrication and integration approach and supported by a self-developed circuit system to record weak electrophysiological signals, including electroencephalography (EEG), electrocardiogram (ECG), and electromyography (EMG) signals. The microneedles reduced the electrode-skin contact impedance by penetrating the nonconducting stratum corneum in a painless way. The multichannel microneedle array (MMA) enabled painless transdermal recording of multichannel electrophysiological signals from the subcutaneous space, with high temporal and spatial resolution, reaching the level of a single microneedle in terms of signal precision. The MMA demonstrated the detection of the spatial distribution of ECG, EMG and EEG signals in live rabbit models, and the microneedle electrode (MNE) achieved better signal quality in the transcutaneous detection of EEG signals than did the conventional flat dry electrode array. This work offers a promising opportunity to develop advanced tools for neural interface technology and electrophysiological recording.
Collapse
Grants
- National Key R&D Program of China (Grant No. 2021YFF1200700), the National Natural Science Foundation of China (Grant No. T2225010, 32171399, 32171456, 62105380), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515011267), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 22dfx02), Pazhou Lab, Guangzhou (Grant No. PZL2021KF0003), the Opening Project of Key Laboratory of State Key Laboratory of Optoelectronic Materials and Technologies (OEMT-2022-ZRC-04), State key laboratory of precision measuring technology and instruments (Grant No. pilab2211),the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, Grant No.2023-skllmd-09). the Open Fund of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications (No. 2022A01), the Opening Project of State Key Laboratory of Bioelectronics, Southeast University (No. 2023-K09)
- China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Shuang Huang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Zhibo Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Jiayi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Hui-jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Riederer F, Beiersdorf J, Lang C, Pirker-Kees A, Klein A, Scutelnic A, Platho-Elwischger K, Baumgartner C, Dreier JP, Schankin C. Signatures of migraine aura in high-density-EEG. Clin Neurophysiol 2024; 160:113-120. [PMID: 38422969 DOI: 10.1016/j.clinph.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Cortical spreading depolarization is highly conserved among the species. It is easily detectable in direct cortical surface recordings and has been recorded in the cortex of humans with severe neurological disease. It is considered the pathophysiological correlate of human migraine aura, but direct electrophysiological evidence is still missing. As signatures of cortical spreading depolarization have been recognized in scalp EEG, we investigated typical spontaneous migraine aura, using full band high-density EEG (HD-EEG). METHODS In this prospective study, patients with migraine with aura were investigated during spontaneous migraine aura and interictally. Time compressed HD-EEG were analyzed for the presence of cortical spreading depolarization characterized by (a) slow potential changes below 0.05 Hz, (b) suppression of faster activity from 0.5 Hz - 45 Hz (c) spreading of these changes to neighboring regions during the aura phase. Further, topographical changes in alpha-power spectral density (8-14 Hz) during aura were analyzed. RESULTS In total, 26 HD-EEGs were recorded in patients with migraine with aura, thereof 10 HD-EEGs during aura. Eight HD-EEGs were recorded in the same subject. During aura, no slow potentials were recorded, but alpha-power was significantly decreased in parieto-occipito-temporal location on the hemisphere contralateral to visual aura, lasting into the headache phase. Interictal alpha-power in patients with migraine with aura did not differ significantly from age- and sex-matched healthy controls. CONCLUSIONS Unequivocal signatures of spreading depolarization were not recorded with EEG on the intact scalp in migraine. The decrease in alpha-power contralateral to predominant visual symptoms is consistent with focal depression of spontaneous brain activity as a consequence of cortical spreading depolarization but is not specific thereof. SIGNIFICANCE Cortical spreading depolarization is relevant in migraine, other paroxysmal neurological disorders and neurointensive care.
Collapse
Affiliation(s)
- Franz Riederer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University of Zurich, Medical Faculty, Zurich, Switzerland.
| | - Johannes Beiersdorf
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology
| | - Clemens Lang
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Agnes Pirker-Kees
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Antonia Klein
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian Scutelnic
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kirsten Platho-Elwischger
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Christoph Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Jens P Dreier
- Department of Neurology and Experimental Neurology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Zhang W, Zhang J, Wang Y, Wang S, Wu Y, Zhang W, Wu M, Wang L, Xu G, Deng F, Liu W, Liu Z, Chen L, Xiao K, Zhang L. In Vitro Detection of S100B and Severity Evaluation of Traumatic Brain Injury Based on Biomimetic Peptide-Modified Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306809. [PMID: 38009781 DOI: 10.1002/smll.202306809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Jianrui Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Senyao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yitian Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchang Zhang
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhengwei Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Lu Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
9
|
Díaz-Peregrino R, Kentar M, Trenado C, Sánchez-Porras R, Albiña-Palmarola P, Ramírez-Cuapio FL, San-Juan D, Unterberg A, Woitzik J, Santos E. The neurophysiological effect of mild hypothermia in gyrencephalic brains submitted to ischemic stroke and spreading depolarizations. Front Neurosci 2024; 18:1302767. [PMID: 38567280 PMCID: PMC10986791 DOI: 10.3389/fnins.2024.1302767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Objective Characterize the neurophysiological effects of mild hypothermia on stroke and spreading depolarizations (SDs) in gyrencephalic brains. Methods Left middle cerebral arteries (MCAs) of six hypothermic and six normothermic pigs were permanently occluded (MCAo). Hypothermia began 1 h after MCAo and continued throughout the experiment. ECoG signals from both frontoparietal cortices were recorded. Five-minute ECoG epochs were collected 5 min before, at 5 min, 4, 8, 12, and 16 h after MCAo, and before, during, and after SDs. Power spectra were decomposed into fast (alpha, beta, and gamma) and slow (delta and theta) frequency bands. Results In the vascular insulted hemisphere under normothermia, electrodes near the ischemic core exhibited power decay across all frequency bands at 5 min and the 4th hour after MCAo. The same pattern was registered in the two furthest electrodes at the 12th and 16th hour. When mild hypothermia was applied in the vascular insulted hemispheres, the power decay was generalized and seen even in electrodes with uncompromised blood flow. During SD analysis, hypothermia maintained increased delta and beta power during the three phases of SDs in the furthest electrode from the ischemic core, followed by the second furthest and third electrode in the beta band during preSD and postSD segments. However, in hypothermic conditions, the third electrode showed lower delta, theta, and alpha power. Conclusion Mild hypothermia attenuates all frequency bands in the vascularly compromised hemisphere, irrespective of the cortical location. During SD formation, it preserves power spectra more significantly in electrodes further from the ischemic core.
Collapse
Affiliation(s)
- Roberto Díaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Modar Kentar
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Departement of Neurosurgery, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Carlos Trenado
- Heinrich Heine University, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Düsseldorf, Germany
- Institute for the Future of Education Europe, Tecnológico de Monterrey, Cantabria, Spain
| | - Renán Sánchez-Porras
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Pablo Albiña-Palmarola
- Neuroradiologische Klinik, Klinikum Stuttgart, Stuttgart, Germany
- Medizinische Fakultät, Universität Duisburg-Essen, Essen, Germany
- Department of Anatomy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco L. Ramírez-Cuapio
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|