1
|
Vakili S, Haeili M, Feizi A, Moghaddasi K, Omrani M, Ghodousi A, Cirillo DM. Whole-genome sequencing-based characterization of Salmonella enterica Serovar Enteritidis and Kentucky isolated from laying hens in northwest of Iran, 2022-2023. Gut Pathog 2025; 17:2. [PMID: 39819347 PMCID: PMC11737214 DOI: 10.1186/s13099-025-00679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain. In this study NTS strains were isolated from diseased laying hens in Iran and were further studied by whole-genome sequencing (WGS) to investigate the prevalent serovars, multilocus sequence types, antimicrobial resistance and virulence genes. RESULTS Out of eight isolated Salmonella spp. six were identified as S. Enteritidis serovar ST11 (n = 5) or ST5824 (n = 1), and two isolates were recognized as S. Kentucky serotype ST198 lineages. The aminoglycoside resistance gene aac(6')-Iaa was the most frequently detected gene being present in all serovars, but it did not confer phenotypic resistance to corresponding agents (tobramycin and amikacin). All S. Enteritidis isolates carried a single GyrA D87N/Y substitution. Other identified antimicrobial resistance genes (ARGs) including tetA, floR, sul1, dfrA1, aph(3')-Ia and double gyrA and parC mutations conferring high-level ciprofloxacin resistance (CIPR) (MIC ≥ 16mg/L) were only found in S. Kentucky isolates. The comparison of phenotypic and genotypic antimicrobial resistance (AMR) profiles revealed inconsistent results for some antibiotics. A total of 11 different Salmonella Pathogenicity Islands (SPIs) including SPIs-1, to 5, 9, 10, 13, 14, C63PI, CS54 and several virulence genes related to type III secretion system, adhesins, iron and magnesium uptake, serum and antimicrobial peptide resistance were detected among the isolates. CONCLUSIONS Our study reports emergence of a highly MDR- CIPR S. Kentucky ST198 clone form poultry associated sources in Iran. The presence of numerous virulence determinants, SPIs and ARGs in the examined NTS isolates poses a significant risk for food safety. The inconsistencies between the genotypic and phenotypic AMR profiles indicate that WGS data alone may not be always sufficient for guiding therapeutic strategies.
Collapse
Affiliation(s)
- Shirin Vakili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Adel Feizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | | | - Maryam Omrani
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy.
| | | |
Collapse
|
2
|
Lewnard JA, Charani E, Gleason A, Hsu LY, Khan WA, Karkey A, Chandler CIR, Mashe T, Khan EA, Bulabula ANH, Donado-Godoy P, Laxminarayan R. Burden of bacterial antimicrobial resistance in low-income and middle-income countries avertible by existing interventions: an evidence review and modelling analysis. Lancet 2024; 403:2439-2454. [PMID: 38797180 DOI: 10.1016/s0140-6736(24)00862-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
National action plans enumerate many interventions as potential strategies to reduce the burden of bacterial antimicrobial resistance (AMR). However, knowledge of the benefits achievable by specific approaches is needed to inform policy making, especially in low-income and middle-income countries (LMICs) with substantial AMR burden and low health-care system capacity. In a modelling analysis, we estimated that improving infection prevention and control programmes in LMIC health-care settings could prevent at least 337 000 (95% CI 250 200-465 200) AMR-associated deaths annually. Ensuring universal access to high-quality water, sanitation, and hygiene services would prevent 247 800 (160 000-337 800) AMR-associated deaths and paediatric vaccines 181 500 (153 400-206 800) AMR-associated deaths, from both direct prevention of resistant infections and reductions in antibiotic consumption. These estimates translate to prevention of 7·8% (5·6-11·0) of all AMR-associated mortality in LMICs by infection prevention and control, 5·7% (3·7-8·0) by water, sanitation, and hygiene, and 4·2% (3·4-5·1) by vaccination interventions. Despite the continuing need for research and innovation to overcome limitations of existing approaches, our findings indicate that reducing global AMR burden by 10% by the year 2030 is achievable with existing interventions. Our results should guide investments in public health interventions with the greatest potential to reduce AMR burden.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA.
| | - Esmita Charani
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Alec Gleason
- One Health Trust, Bengaluru, India; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Wasif Ali Khan
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Clare I R Chandler
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Antimicrobial Resistance Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Tapfumanei Mashe
- One Health Office, Ministry of Health and Child Care, Harare, Zimbabwe; Health System Strengthening Unit, WHO, Harare, Zimbabwe
| | - Ejaz Ahmed Khan
- Department of Pediatrics, Shifa Tameer-e-Millat University, Shifa International Hospital, Islamabad, Pakistan
| | - Andre N H Bulabula
- Division of Disease Control and Prevention, Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Pilar Donado-Godoy
- AMR Global Health Research Unit, Colombian Integrated Program of Antimicrobial Resistance Surveillance, Corporación Colombiana de Investigación Agropecuaria, Cundinamarca, Colombia
| | - Ramanan Laxminarayan
- One Health Trust, Bengaluru, India; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Jiang Y, Yang H, Wang ZY, Lin DC, Jiao X, Hu Y, Wang J. Persistent Colonization of Ciprofloxacin-Resistant and Extended-Spectrum β-Lactamase (ESBL)-Producing Salmonella enterica Serovar Kentucky ST198 in a Patient with Inflammatory Bowel Disease. Infect Drug Resist 2024; 17:1459-1466. [PMID: 38628240 PMCID: PMC11020243 DOI: 10.2147/idr.s447971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Salmonella enterica serovar Kentucky ST198 has emerged as a global threat to humans. In this study, we aimed to characterize the prolonged carriage of ciprofloxacin-resistant and extended-spectrum β-lactamase (ESBL)-producing S. Kentucky ST198 in a single patient with inflammatory bowel disease (IBD). Methods Three S. Kentucky strains were collected from a single patient with IBD on 11th January, 23rd January, and 8th February, 2022, respectively. Antimicrobial susceptibility testing, whole-genome sequencing, and phylogenetic analysis with 38 previously described Chinese S. Kentucky ST198 strains from patients and food were performed. Results All three S. Kentucky isolates belonged to ST198. They carried identical 16 resistance genes, such as blaCTX-M-55, tet(A), and qnrS1, and had identical mutations within gyrA (S83F and D87N) and parC (S80I). Therefore, they exhibited identical multidrug-resistant profiles, including the clinically important antibiotics cephalosporins (ceftazidime and cefepime), fluoroquinolones (ciprofloxacin and levofloxacin), and third-generation tetracycline (tigecycline). Our three S. Kentucky strains were classified into the subclade ST198.2-2, and were genetically identical (2-6 SNPs) to each other. They exhibited a close genetic similarity (15-20 SNPs) to the isolate NT-h3189 from a patient and AH19MCS1 from chicken meat in China, indicating a possible epidemiological link between these S. Kentucky ST198 isolates from the patients and chicken meat. Conclusion Long-term colonization of ciprofloxacin-resistant and ESBL-producing S. Kentucky ST198 in a single patient is a matter of concern. Due to the potential transfer of S. Kentucky ST198 from food sources to humans, ongoing surveillance of this particular clone in animals, animal-derived food products, and humans should be strengthened.
Collapse
Affiliation(s)
- Yue Jiang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| | - Huilin Yang
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| | - Da-Chuan Lin
- Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| | - Yunlong Hu
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
- Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| |
Collapse
|