1
|
Getz LJ, Fairburn SR, Vivian Liu Y, Qian AL, Maxwell KL. Integrons are anti-phage defence libraries in Vibrio parahaemolyticus. Nat Microbiol 2025:10.1038/s41564-025-01927-7. [PMID: 39870871 DOI: 10.1038/s41564-025-01927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes. Using bioinformatics, we discovered that previously characterized defences localize to integrons. Intrigued by this discovery, we cloned 57 integron gene cassettes and identified 9 previously unrecognized systems that mediate defence. Our work reveals that integrons are an important reservoir of defence systems in V. parahaemolyticus. As integrons are of ancient origin and are widely distributed among Proteobacteria, these results provide an approach for the discovery of anti-phage defence systems across a broad range of bacteria.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sam R Fairburn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Y Vivian Liu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Amy L Qian
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Kieffer N, Böhm ME, Berglund F, Marathe NP, Gillings MR, Larsson DGJ. Identification of novel FosX family determinants from diverse environmental samples. J Glob Antimicrob Resist 2024; 41:8-14. [PMID: 39725324 DOI: 10.1016/j.jgar.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES This study aimed to identify novel fosfomycin resistance genes across diverse environmental samples, ranging in levels of anthropogenic pollution. We focused on fosfomycin resistance, and given its increasing clinical importance, explored the prevalence of these genes within different environmental contexts. METHODS Metagenomic DNA was extracted from wastewater and sediment samples collected from sites in India, Sweden, and Antarctica. Class 1 integron gene cassette libraries were prepared, and resistant clones were selected on fosfomycin-supplemented media. Long-read sequencing was performed followed by bioinformatics analysis to identify novel fosfomycin resistance genes. The genes were cloned and functionally characterized in E. coli, and the impact of phosphonoformate on the enzymes was assessed. RESULTS Four novel fosfomycin resistance genes were identified. Phylogenetic analysis placed these genes within the FosX family, a group of metalloenzymes that hydrolyse fosfomycin without thiol conjugation. The genes were subsequently renamed fosE2, fosI2, fosI3, and fosP. Functional assays confirmed that these genes conferred resistance to fosfomycin in E. coli, with MIC ranging from 32 μg/ml to 256 μg/ml. Unlike FosA/B enzymes, these FosX-like proteins were resistant to phosphonoformate inhibitory action. A fosI3 homolog was identified in Pseudomonas aeruginosa, highlighting potential clinical relevance. CONCLUSIONS This study expands the understanding of fosfomycin resistance by identifying new FosX family members across diverse environments. The lack of phosphonoformate inhibition underscores the clinical importance of these poorly studied enzymes, which warrant further investigation, particularly in pathogenic contexts.
Collapse
Affiliation(s)
- Nicolas Kieffer
- Molecular Basis of Adaptation Laboratory, Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, España; Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Michael R Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia; Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
4
|
Blanco P, Trigo da Roza F, Toribio-Celestino L, García-Pastor L, Caselli N, Morón Á, Ojeda F, Darracq B, Vergara E, Amaro F, San Millán Á, Skovgaard O, Mazel D, Loot C, Escudero J. Chromosomal integrons are genetically and functionally isolated units of genomes. Nucleic Acids Res 2024; 52:12565-12581. [PMID: 39385642 PMCID: PMC11551772 DOI: 10.1093/nar/gkae866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Integrons are genetic elements that increase the evolvability of bacteria by capturing new genes and stockpiling them in arrays. Sedentary chromosomal integrons (SCIs) can be massive and highly stabilized structures encoding hundreds of genes, whose function remains generally unknown. SCIs have co-evolved with the host for aeons and are highly intertwined with their physiology from a mechanistic point of view. But, paradoxically, other aspects, like their variable content and location within the genome, suggest a high genetic and functional independence. In this work, we have explored the connection of SCIs to their host genome using as a model the Superintegron (SI), a 179-cassette long SCI in the genome of Vibrio cholerae N16961. We have relocated and deleted the SI using SeqDelTA, a novel method that allows to counteract the strong stabilization conferred by toxin-antitoxin systems within the array. We have characterized in depth the impact in V. cholerae's physiology, measuring fitness, chromosome replication dynamics, persistence, transcriptomics, phenomics, natural competence, virulence and resistance against protist grazing. The deletion of the SI did not produce detectable effects in any condition, proving that-despite millions of years of co-evolution-SCIs are genetically and functionally isolated units of genomes.
Collapse
Affiliation(s)
- Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro Morón
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Ojeda
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Ester Vergara
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Amaro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
5
|
Akkari H, Heleili N, Ozgumus OB, Merradi M, Reis A, Ayachi A, Akarsu N, Tufekci EF, Kiliç AO. Prevalence and molecular characterization of ESBL/pAmpC producing faecal Escherichia coli strains with widespread detection of CTX-M-15 isolated from healthy poultry flocks in Eastern Algeria. Microb Pathog 2024; 196:106973. [PMID: 39313136 DOI: 10.1016/j.micpath.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The intensification of livestock farming has led to the widespread use of massive amounts of antibiotics worldwide. Poultry production, including white meat, eggs and the use of their manure as fertiliser, has been identified as one of the most crucial reservoirs for the emergence and spread of resistant bacteria, including E. coli in poultry as an important opportunistic pathogen representing the greatest biological hazard to human and wildlife health. Thus, this study aimed to analyse E. coli in the faecal carriage of healthy poultry flocks and to investigate the phenotypic and genotypic characteristics of antimicrobial resistance, including integrons genes and phylogenetic groups. A total of 431 cloacal swabs from apparently healthy poultry from four regions in Eastern Algeria from December 2021 to October 2022. 360 E. coli were isolated; from broilers (n = 151), broiler breeders (n = 91), laying hens (n = 72), and breeding hens (n = 46). Among this, 281 isolates exhibited multidrug resistance (MDR) phenotype, 17 of the 360 E. coli isolates exhibited ESBL, and one isolate exhibited both ESBL/pAmpC. A representative collection of 183 among 281 MDR E. coli was selected for further analysis by PCR to detect genes encoding resistance to different antibiotics, and sequencing was performed on all positive PCR products of blaCTX-M and blaCMY-2 genes. Phylogenetic groups were determined in 80 E. coli isolates (20 from each of the four kinds of poultry). The blaCTX-M gene was found in 16 (94.11 %) ESBL-producing E. coli isolates within 11 strains co-expressing the blaSHV gene and 8 strains co-expressing the blaTEM gene. Sequence analysis showed frequent diversity in CTX-M-group-1, with blaCTX-M-15 being the most predominant (n = 11), followed by blaCTX-M-1 (n = 5). The blaCMY-2 gene was detected only in one ESBL/pAmpC isolate. Among the 183 tested isolates, various antimicrobial resistance genes were found (number of strains) blaTEM (n = 121), blaSHV (n = 12), tetA (n = 100), tetB (n = 29), sul1(n = 67), sul2 (n = 32), qnrS (n = 45), qnrB (n = 10), qnrA (n = 1), catA1(n = 13), aac-(6')-Ib (n = 3). Furthermore, class 1 and class 2 integrons were found in 113 and 2 E. coli, respectively. The isolates were classified into multiple phylogroups, including A (35 %), B1 (27.5 %), B2 and D each (18.75 %). The detection of integrons and different classes of resistance genes in the faecal carriage of healthy poultry production indicates that commensal E. coli could potentially act as a reservoir for antimicrobial resistance, posing a significant One Health challenge encompassing the interconnected domains of human, animal health and the environment. Here, we present the first investigation to describe the diversity of blaCTX-M producing E. coli isolates with widespread detection of CTX-M-15 and CTX-M-1 in healthy breeders (Broiler and breeding hens) in Eastern Algeria.
Collapse
Affiliation(s)
- Hafsa Akkari
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Nouzha Heleili
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - Osman Birol Ozgumus
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Manel Merradi
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - Ahu Reis
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ammar Ayachi
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Neslihan Akarsu
- Department of Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Enis Fuat Tufekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, 37200, Kastamonu, Turkey
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
6
|
Carvalho A, Hipólito A, Trigo da Roza F, García-Pastor L, Vergara E, Buendía A, García-Seco T, Escudero JA. The expression of integron arrays is shaped by the translation rate of cassettes. Nat Commun 2024; 15:9232. [PMID: 39455579 PMCID: PMC11511950 DOI: 10.1038/s41467-024-53525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Integrons are key elements in the rise and spread of multidrug resistance in Gram-negative bacteria. These genetic platforms capture cassettes containing promoterless genes and stockpile them in arrays of variable length. In the current integron model, expression of cassettes is granted by the Pc promoter in the platform and is assumed to decrease as a function of its distance. Here we explored this model using a large collection of 136 antibiotic resistance cassettes and show the effect of distance is in fact negligible. Instead, cassettes have a strong impact in the expression of downstream genes because their translation rate affects the stability of the whole polycistronic mRNA molecule. Hence, cassettes with reduced translation rates decrease the expression and resistance phenotype of cassettes downstream. Our data puts forward an integron model in which expression is contingent on the translation of cassettes upstream, rather than on the distance to the Pc.
Collapse
Affiliation(s)
- André Carvalho
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| | - Alberto Hipólito
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Ester Vergara
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Aranzazu Buendía
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - José Antonio Escudero
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Tantry M, Shaw T, Rao S, Mukhopadhyay C, Tellapragada C, Kalwaje Eshwara V. Heterogeneity and Genomic Plasticity of Acinetobacter baumannii and Acinetobacter nosocomialis Isolates Recovered from Clinical Samples in India. Curr Microbiol 2024; 81:415. [PMID: 39425793 DOI: 10.1007/s00284-024-03942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Acinetobacter baumannii and Acinetobacter nosocomialis are the imperious pathogens in the intensive care units. We aimed to explore the genomic features of these pathogens to understand the factors influencing their plasticity. Using next-generation sequencing, two carbapenem-resistant A. baumannii (AbaBS-3, AbaETR-4) isolates and a pan-susceptible A. nosocomialis (AbaAS-5) isolate were characterised. All genomes exhibited 94% similarity with a degree of heterogeneity. AbaBS-3 and AbaETR-4 harboured antibiotic resistance gene (ARG) repertoire to most antibiotic classes. Carbapenem resistance was due to blaOXA-23 and blaOXA-66 besides the antibiotic efflux pumps. Diverse mobile genetic elements (MGE), insertion sequences (IS), prophages and virulence determinants with a plethora of stress response genes were identified in all three genomes. Class-1 integron in AbaETR-4, encoded genes that confer resistance to aminoglycosides, phenicol, sulfonamides and disinfectants. Substitutions in LpxACD and PmrCAB of AbaETR-4 confirmed the colistin resistance in vitro. Novel mutations in piuA, responsible for transporting cefiderocol, were found in AbaBS-3 and AbaETR-4. Plasmids carrying toxin-antitoxin systems, ARGs and ISs were present in these genomes. All three genomes harboured diverse protein secretion systems, virulence determinants related to immune evasion, adherence, biofilm formation and iron acquisition systems. AbaAS-5 exclusively harboured serine protease pkf, and CpaA substrate of type-II secretion system but lacked the acinetobactin-iron acquisition system. Our work delivers a holistic genome characterization of A. baumannii, coupled with a trailblazing attempt to study A. nosocomialis from India. The presence of ARGs and potential virulence factors interspersed with MGE is a cause for concern, depicting the dynamic adaptability mediated by genetic recombination.
Collapse
Affiliation(s)
- Manasa Tantry
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tushar Shaw
- Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore, 560054, India
| | - Shwethapriya Rao
- Department of Critical Care, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 14183, Stockholm, Sweden
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
Opazo-Capurro A, Aguilar-Vera OA, González-Muñoz P, Amsteins-Romero L, Quiroga M, Encina A, Herrera-Chávez N, Quezada-Aguiluz M, Aguayo-Reyes A, Morales-León F, Illesca V, Vera R, Salgado F, Suazo P, Fuenzalida LM, Bello-Toledo H, Castillo-Ramírez S, González-Rocha G. Genomic and Phylogenomic Characterization of Carbapenem-resistant Pseudomonas aeruginosa 'High-risk' Clone O4/ExoS+/ST654 Circulating in Chilean Hospitals. J Glob Antimicrob Resist 2024; 38:205-211. [PMID: 38849115 DOI: 10.1016/j.jgar.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a serious threat to public health. Globally, carbapenemases-producing CRPA isolates mainly belong to 'high-risk' clones; however, the molecular epidemiology of CRPA isolates circulating in Chile are scarce, where this pathogen is the main aetiological agent of ventilator-associated pneumonia. OBJECTIVES To characterize the phylogenomics and molecular features of ST654 CRPA isolates collected in Chile between 2016 and 2022. METHODS Eighty-nine CRPA isolates collected in different Chilean hospitals from clinical specimens between 2005 and 2022 were analysed. Antibiotic susceptibility tests and carbapenemases production were carried out on the CRPA ST654 isolates. Also, they were subjected to whole-genome sequencing, from which in silico analyses were performed. RESULTS Thirty-four strains (38.2%) belonged to the ST654 high-risk clone, being the most predominant lineage of the collection. Most of these isolates belonged to a subclade including KPC producers that also clustered with strains from Argentina and the United States, whereas few VIM and NDM co-producers clustered in two different smaller subclades. The isolates exhibited a broad resistome encompassing genes mediating resistance to several other clinically relevant drugs. Additionally, all the 34 ST654 isolates were ExoS+ as a virulence factor and associated to the O4-serotype. CONCLUSIONS Our report represents the most comprehensive phylogenomic study of a CRPA high-risk clone ST654 to date. Our analyses suggest that this lineage is undergoing a divergent evolutionary path in Chile, because most of the isolates were KPC producers and were O4 serotype, differing from previous descriptions, which underline the relevance of performing molecular surveillance on this pathogen.
Collapse
Affiliation(s)
- Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
| | - Omar Alejandro Aguilar-Vera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Paulina González-Muñoz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Luis Amsteins-Romero
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
| | - Monserrat Quiroga
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Encina
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Néstor Herrera-Chávez
- Laboratorio de Microbiología, Hospital Regional Guillermo Grant Benavente, Concepción, Chile
| | - Mario Quezada-Aguiluz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Grupo de Estudio de Enfermedades Infecciosas de la Universidad de Concepción (GrEEn-UdeC), Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Alejandro Aguayo-Reyes
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Grupo de Estudio de Enfermedades Infecciosas de la Universidad de Concepción (GrEEn-UdeC), Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Felipe Morales-León
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Vijna Illesca
- Hospital Hernán Henríquez Aravena, Laboratorio Clínico, Temuco, Chile
| | - Rodrigo Vera
- Hospital de Urgencia Asistencia Pública, Santiago de Chile, Chile
| | | | | | | | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
10
|
Wang X, Dai Y, Kong N, Cao M, Zhang L, Wei Q. Screening Key Sites of Class 2 Integron Integrase that Impact Recombination Efficiency. Curr Microbiol 2024; 81:163. [PMID: 38710822 DOI: 10.1007/s00284-024-03674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
By capturing and expressing exogenous resistance gene cassettes through site-specific recombination, integrons play important roles in the horizontal transfer of antimicrobial resistant genes among bacteria. The characteristics of integron integrase make it to be a potential gene editing tool enzyme. In this study, a random mutation library using error-prone PCR was constructed, and amino acid residues mutants that impact on attI2 × attC or attC × attC recombination efficiency were screened and analyzed. Thirteen amino acid mutations were identified to be critical impacted on site-specific recombination of IntI2, including the predicted catalyzed site Y301. Nine of 13 mutated amino acid residues that have critically impacted on IntI2 activity were relative concentrated and near the predicted catalyzed site Y301 in the predicted three-dimensional structure indicated the importance of this area in maintain the activity of IntI2. No mutant with obviously increased recombination activity (more than four-fold as high as that of wild IntI2) was found in library screening, except P95S, R100K slightly increased (within two-fold) the excision activity of IntI2, and S243T slightly increased (within two-fold) both excision and integration activity of IntI2. These findings will provide clues for further specific modification of integron integrase to be a tool enzyme as well as establishing a new gene editing system and applied practically.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai JiaoTong University School of Medicine, 748 Middle Zhongshan Road, Shanghai, 201602, China
| | - Yueru Dai
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Nana Kong
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Mei Cao
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Long Zhang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
11
|
Ghaly TM, Gillings MR, Rajabal V, Paulsen IT, Tetu SG. Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange. Front Microbiol 2024; 15:1338026. [PMID: 38741746 PMCID: PMC11089894 DOI: 10.3389/fmicb.2024.1338026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| |
Collapse
|
12
|
Zhu Y, Wang T, Zhu W, Wei Q. Molecular Characterization of Class 1 Integrons and Carbapenem-Resistant Genes in Enterobacter cloacae Complex Isolates. Curr Microbiol 2024; 81:158. [PMID: 38658428 DOI: 10.1007/s00284-024-03679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Enterobacter cloacae complex (ECC) widely exists in the hospital environment and is one of the important conditional pathogens of hospital-acquired infection. To investigate the distribution of integrons and carbapenem-resistant genes in clinical ECC, 70 isolates of ECC from non-sputum specimens were collected. Class 1 and class 2 integron integrase gene intI1 and intI2, as well as common carbapenem-resistant genes, blaKPC, blaVIM, blaIMP, blaNDM, blaGES, and blaOXA-23, were screened. Gene cassette arrays and common promoters of class 1 integron together with subtypes of carbapenem-resistant genes were determined by sequencing. Resistant rates to commonly used antimicrobial agents between class 1 integron-positive and integron-negative ECC isolates were analyzed. The whole-genome of blaNDM-7 harboring Enterobacter hormaechei was sequenced and the sequence around blaNDM-7 was analyzed. Twenty isolates were positive for intI1. Nineteen different antimicrobial-resistant gene cassettes and 11 different gene cassette arrays, including aadA22-lnuF, were detected in this study. Common promoters of class 1 integron PcH1, PcW, PcW-P2, and PcH2 were detected in 12, 4, 3, and 1 isolates, respectively. The rates of antimicrobial resistance of intI1-positive isolates were higher than those of intI1-negative isolates to clinical commonly used antimicrobial agents. Carbapenem-resistant genes blaKPC-2, blaNDM-1, blaNDM-2, and blaNDM-7 were detected in 2, 1, 1, and 1 isolates, respectively. blaNDM-7 was located between bleMBL and IS5. To the best of our knowledge, this study reported for the first time of blaNDM-7 in ECC isolate in China.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Laboratory Medicine, Yancheng Second People's Hospital, Jiangsu, 224000, China
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Tong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Wenwen Zhu
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
13
|
Blanco P, Hipólito A, García-Pastor L, Trigo da Roza F, Toribio-Celestino L, Ortega A, Vergara E, San Millán Á, Escudero J. Identification of promoter activity in gene-less cassettes from Vibrionaceae superintegrons. Nucleic Acids Res 2024; 52:2961-2976. [PMID: 38214222 PMCID: PMC11014356 DOI: 10.1093/nar/gkad1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.
Collapse
Affiliation(s)
- Paula Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Hipólito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía García-Pastor
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alba Cristina Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ester Vergara
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid 28222, Spain
| | - José Antonio Escudero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
14
|
Kneis D, Tskhay F, de la Cruz Barron M, Berendonk TU. Bacteria of the order Burkholderiales are original environmental hosts of type II trimethoprim resistance genes (dfrB). THE ISME JOURNAL 2024; 18:wrae243. [PMID: 39658215 DOI: 10.1093/ismejo/wrae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
It is consensus that clinically relevant antibiotic resistance genes have their origin in environmental bacteria, including the large pool of primarily benign species. Yet, for the vast majority of acquired antibiotic resistance genes, the original environmental host(s) has not been identified to date. Closing this knowledge gap could improve our understanding of how antimicrobial resistance proliferates in the bacterial domain and shed light on the crucial step of initial resistance gene mobilization in particular. Here, we combine information from publicly available long- and short-read environmental metagenomes as well as whole-genome sequences to identify the original environmental hosts of dfrB, a family of genes conferring resistance to trimethoprim. Although this gene family stands in the shadow of the more widespread, structurally different dfrA, it has recently gained attention through the discovery of several new members. Based on the genetic context of dfrB observed in long-read metagenomes, we predicted bacteria of the order Burkholderiales to function as original environmental hosts of the predominant gene variants in both soil and freshwater. The predictions were independently confirmed by whole-genome datasets and statistical correlations between dfrB abundance and taxonomic composition of environmental bacterial communities. Our study suggests that Burkholderiales in general and the family Comamonadaceae in particular represent environmental origins of dfrB genes, some of which now contribute to the acquired resistome of facultative pathogens. We propose that our workflow centered on long-read environmental metagenomes allows for the identification of the original hosts of further clinically relevant antibiotic resistance genes.
Collapse
Affiliation(s)
- David Kneis
- Dresden University of Technology, Institute of Hydrobiology, 01062 Dresden, Saxony, Germany
| | - Faina Tskhay
- Dresden University of Technology, Institute of Hydrobiology, 01062 Dresden, Saxony, Germany
| | | | - Thomas U Berendonk
- Dresden University of Technology, Institute of Hydrobiology, 01062 Dresden, Saxony, Germany
| |
Collapse
|