1
|
Yuan X, Yan L, Chen Q, Zhu S, Zhou X, Zeng LH, Liu M, He X, Huang J, Lu W, Zhang L, Yan H, Wang F. Molecular mechanism and functional significance of Wapl interaction with the Cohesin complex. Proc Natl Acad Sci U S A 2024; 121:e2405177121. [PMID: 39110738 PMCID: PMC11331136 DOI: 10.1073/pnas.2405177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lu Yan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qinfu Chen
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shukai Zhu
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinyu Zhou
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Mingjie Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital of Zhejiang University School of Medicine, and Cancer Center of Zhejiang University, Hangzhou, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Fangwei Wang
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Andrade Ruiz L, Kops GJPL, Sacristan C. Vertebrate centromere architecture: from chromatin threads to functional structures. Chromosoma 2024; 133:169-181. [PMID: 38856923 PMCID: PMC11266386 DOI: 10.1007/s00412-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Collapse
Affiliation(s)
- Lorena Andrade Ruiz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Carlos Sacristan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|